G. NARAYANAMMA INSTITUTE OF TECHNOLOGY & SCIENCE

(For Women)

(AUTONOMOUS) Shaikpet, HVDERABAD - 500 104

II Year B. Tech. EEE I-Semester

C 3 3

ELECTROMAGNETIC FIELDS

Prerequisites: Physics

Course Objectives:

- 1. To understand and apply the concepts of electric fields and magnetic
- 2. To gain understanding of Maxwell's equations for both static and time varying fields.
- 3. To introduce the concepts of plane wave motion and Electromagnetic Interference.

Unit 1: (-12 Lecture Hours)

Static Electric Fields

Review of Vector Algebra, co-ordinate Systems, Unit Vectors, Scalar & Vector Products, Differential Lengths, Differential Surfaces & Differential Volumes. Coulomb's Law, Electric Field Intensity (EFI), EFI due to Point, Line, Surface &Volume Charges-Gauss Law & its Applications - Divergence- Maxwell's First Equation - Divergence Theorem -Electric Potential-Maxwell's Second Equation-Potential Gradient, Electric Dipole, Electrostatic Energy & Energy Density.

Unit 2: (~8 Lecture Hours)

Conductors, Dielectrics & Capacitance

Behavior of Conductors in an Electric Field-Current - Current Density-Continuity Equation-Point Form of Ohm's Law, Dielectrics - Polarization -Dielectric Constant-Boundary Conditions, Capacitance-Capacitance of a Two Wire Line, Poisson's & Laplace's Equations - Solution & Applications of Laplace's Equation.

Unit 3: (~9 Lecture Hours)

Static Magnetic Fields

Biot-Savart's Law-Magnetic Field Intensity (MFI) - MFI due to Straight, Circular & Solenoidal Current Carrying conductors, Ampere's Circuital Law its Applications-Curl -Maxwell's Third Equation-Stoke's Theorem, Magnetic flux- Magnetic Flux Density-Maxwell's Fourth Equation, Scalar and Vector Magnetic Potentials & their Properties.

Unit 4: (~8 Lecture Hours)

Forces in Magnetic Fields & Inductance

Force on a Moving Charge-Lorentz's Force Equation-Force on a Differential Current Element-Force between Two Straight Long Parallel Current Carrying

10)

G. NARAYANAMMA INSTITUTE OF TECHNOLOGY & SCIENCE (For Women)

(AUTONOMOUS) Shalkpet, HYDERABAD - 500 104

Conductors, Nature of Magnetic Materials-Magnetic Dipole-Magnetization and Relative Paragraphics of Magnetic Materials-Magnetic Dipole-Magnetization and Relative Permeability, Magnetic Circuits-Self & Mutual Inductances, Magnetic Energy Stored and Energy Density.

Unit 5: (-9 Lecture Hours)

Time Varying Fields & Electro Magnetic Interference

Faraday's Laws of Electromagnetic Induction -Statically & Dynamically Induced EMF, Displacement Current, Modification of Maxwell's Equations

Uniform Plane Waves-Maxwell's Equations in Phasor form (Qualitative

Treatment Only), Poynting Theorem & Poynting Vector.

Introduction to Electro Magnetic Interference and Electro Magnetic Compatibility (EMI & EMC) - Sources and Characteristics of EMI (Elementary Treatment Only).

Text Books:

1) William H Hayt & John A Buck, Engineering Electromagnetics, McGrawHill

2) Sadiku, "Electromagnetic Fields", Oxford Publications

Reference Books:

- 1) D J Griffiths, Introduction to Electro Dynamics, Prentice Hall of India Pvt. Ltd.
- 2) J D Kruas, Electromagnetics, McGraw Hill
- 3) AshutoshPramanik, Electromagnetism Problems with solutions, Prentice Hall of India Pvt. Ltd
- 4) William H Hayt & John A Buck, Electromagnetics Problems and Solutions, McGraw Hill.

Course Outcomes:

- 1. Apply the principles of Vector Algebra to understand the basic laws of electric and magnetic fields.
- 2. Distinguish between the properties of conductors & Dielectrics under the influence of both electric and magnetic fields.
- 3. Formulate and Solve typical problems w.r.t. electrostatics and magneto statics in different media.
- 4. Analyze/interpret various field equations in both point form and integral form.
- 5. Analyze the problems related to both static and time varying fields by using Maxwell's Equations.
- 6. Extend the concepts of field theory to realize plane wave motion and

	e concepts of Electromagnetic	100 va 1100 va
2) N. Malle help 2) Sul boards 3) em	6) January 8) 11 January 9)	11) Rale 12) — 13) Lareddy 14) Phys
5) —	10) 910000	(6) R. Balesubry