

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD (Established by Act No.30 of 2008) Kukatpally, Hyderabad–500085, Telangana State (India)

Academic Regulations of M.Tech (Regular/Full Time) Programmes, 2017-18 (R17) (CBCS)

(Effective for the students admitted into I year from the Academic Year 2017-18 and onwards)

1.0 Post-Graduate Degree Programmes in Engineering & Technology (PGP in E & T) Jawaharlal Nehru Technological University Hyderabad (JNTUH) offers Two Years (Four Semesters) full-time Master of Technology (M. Tech.) Degree programmes, under Choice Based Credit System (CBCS) at its constituent (non- autonomous) and affiliated colleges in different branches of Engineering and Technology with different specializations.

2.0 Eligibility for Admissions

- **2.1** Admission to the PGPs shall be made subject to eligibility, qualification and specializations prescribed by the University from time to time, for each specialization under each M.Tech programme.
- 2.2 Admission to the post graduate programme shall be made on the basis of either the merit rank or Percentile obtained by the qualified student in the relevant qualifying GATE Examination/ the merit rank obtained by the qualified student in an entrance test conducted by Telangana State Government (PGECET) for M.Tech. programmes / an entrance test conducted by JNTUH/ on the basis of any other exams approved by the University, subject to reservations as laid down by the Govt. from time to time.
- 2.3 The medium of instructions for all PG Programmes will be **ENGLISH** only.

3.0 M.Tech. Programme (PGP in E & T) Structure

- **3.1** The M.Tech Programmes in E & T of JNTUH are of Semester pattern, with **Four** Semesters consisting of **Two** academic years, each academic year having **Two** Semesters (First/Odd and Second/Even Semesters). Each Semester shall be of 22 weeks duration (inclusive of Examinations), with a minimum of 90 instructional days per Semester.
- **3.2** The student shall not take more than four academic years to fulfill all the academic requirements for the award of M.Tech. degree from the date of commencement of first year first semester, failing which the student shall forfeit the seat in M.Tech. programme.
- **3.3** UGC/AICTE specified definitions/descriptions are adopted appropriately for various terms and abbreviations used in these PG academic regulations, as listed below:

3.3.1 Semester Scheme

Each Semester shall have 'Continuous Internal Evaluation (CIE)' and 'Semester End Examination (SEE)'. Choice Based Credit System (CBCS) and Credit Based Semester System (CBSS) are taken as 'references' for the present set of Regulations. The terms 'SUBJECT' and 'COURSE' imply the same meaning here and refer to 'Theory Subject', or

'Lab Course', or 'Design/Drawing Subject', or 'Seminar', or 'Comprehensive Viva', or 'Project', or 'Technical Paper Writing' as the case may be.

3.3.2 Credit Courses

All subjects/courses are to be registered by the student in a semester to earn credits which shall be assigned to each subject/course in an L: T: P: C (Lecture Periods: Tutorial Periods: Practical Periods: Credits) structure based on the following general pattern:

- One credit for one hour/week/semester for theory/lecture (L) courses
- One credit for two hours/ week/semester for laboratory/ practical (P) courses or tutorials (T)

Other student activities like study tour, guest lecture, conference/workshop participations, technical paper presentations, and identified mandatory courses, if any, will not carry credits.

3.3.3 Subject Course Classification

All subjects/courses offered for the Post-Graduate Programme in E & T (M.Tech Degree Programme) are broadly classified as follows. The University has followed in general the guidelines issued by AICTE/UGC.

S.No.	Broad Course Classification	Course Group/ Category	Course Description					
1	Core Courses (CoC)	PC- Professional Core Project Work Seminar, Technical Paper Writing Comprehensive Viva-Voce	Includes subjects related to the parent discipline/department/ branch or EngineeringM.Tech Project or PG Project or Major ProjectSeminar/Colloquium based on core contents related to parent discipline/department/branch of EngineeringViva-voce covering all the PG subject studied during the course work and related aspects					
2	Elective Courses (E l E)	PE - Professional Electives OE - Open Electives	- Includes elective subjects related to the parent discipline/department/branch of Engineering					
		Total numb	er of Credits					

4.0 Course Registration

- **4.1** A 'Faculty Advisor or Counselor' shall be assigned to each specialization, who will advise on the Post Graduate Programme (PGP), its Course Structure and Curriculum, Choice/Option for Subjects/ Courses, based on his competence, progress, pre-requisites and interest.
- **4.2** The Academic Section of the College invites 'Registration Forms' from students within 15 days from the commencement of class work through 'ON-LINE SUBMISSIONS', ensuring

'DATE and TIME Stamping'. The ON-LINE Registration Requests for any 'CURRENT SEMESTER' shall be completed BEFORE the commencement of SEEs (Semester End Examinations) of the 'PRECEDING SEMESTER'.

- **4.3** A Student can apply for ON-LINE Registration, ONLY AFTER obtaining the 'WRITTEN APPROVAL' from his Faculty Advisor, which should be submitted to the College Academic Section through the Head of Department (a copy of it being retained with Head of Department, Faculty Advisor and the Student).
- **4.4** If the Student submits ambiguous choices or multiple options or erroneous entries during ON-LINE Registration for the Subject(s) / Course(s) under a given/ specified Course Group/ Category as listed in the Course Structure, only the first mentioned Subject/ Course in that Category will be taken into consideration.
- **4.5** Subject/ Course Options exercised through ON-LINE Registration are final and CANNOT be changed, nor can they be inter-changed; further, alternate choices also will not be considered. However, if the Subject/ Course that has already been listed for Registration by the University in a Semester could not be offered due to unforeseen or unexpected reasons, then the Student will be allowed to have alternate choice either for a new Subject, if it is offered, or for another existing Subject (subject to availability of seats). Such alternate arrangements will be made by the Head of Department, with due notification and time-framed schedule, within the FIRST WEEK from the commencement of Class-work for that Semester.

5.0 Attendance Requirements

The programmes are offered on the basis of a unit system with each subject being considered a unit.

- **5.1** Attendance in all classes (Lectures/Laboratories/Seminar) is compulsory. The minimum required attendance in each theory including the attendance of mid-term examination / Laboratory etc. is 75%. Two periods of attendance for each theory subject shall be considered, if the student appears for the mid-term examination of that subject. A student shall not be permitted to appear for the Semester End Examinations (SEE), if his attendance is less than 75%.
- **5.2** A student's seminar report and seminar presentation will be eligible for evaluation, only if he ensures a minimum of 75% of his attendance in seminar presentation classes during that semester.
- **5.3** Condoning of shortage of attendance (between 65% and 75%) up to a maximum of 10% (considering the days of attendance in sports, games, NCC, NSS activities and Medical grounds) in each subject of a semester shall be granted by the College Academic Committee.
- 5.4 Shortage of Attendance below 65% in any subject shall in **no case be condoned.**
- **5.5** A Student, whose shortage of attendance **is not condoned** in any subject(s) in any semester, is considered detained in that subject(s) and is not eligible to write Semester End Examination(s) of such subject(s) in that semester, and he has to seek re-registration for those subject(s) in subsequent semesters, and attend the same as and when offered.
- **5.6** A student fulfills the attendance requirement in the present semester, shall not be eligible for readmission into the same class.

- 5.7 A prescribed fee per subject shall be payable for condoning shortage of attendance.
- **5.8** A student shall put in a minimum required attendance in at least three theory subjects in I Year I semester for promotion to I Year II Semester.

6.0 Academic Requirements

The following academic requirements have to be satisfied, in addition to the attendance requirements mentioned in item no. 5. The performance of the candidate in each semester shall be evaluated subject-wise, with a maximum of 100 marks per subject / course (theory / practical), on the basis of Internal Evaluation and Semester End Examination.

- 6.1 A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/course, if he secures not less than 40% of marks (30 out of 75 marks) in the End Semester Examination, and a minimum of 50% of marks in the sum total of CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together; in terms of Letter Grades and this implies securing 'B' Grade or above in a subject.
- **6.2** A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to a subject/ course, if he secures not less than 50% of the total marks. The student is deemed to have failed, if he (i) does not attend the comprehensive viva-voce as per the schedule given, or (ii) does not present the seminar as required, or (iii) does not present the Technical Paper Writing as required. In such a case, he may reappear for comprehensive viva-voce in supplementary examinations and for seminar/ technical paper writing, in the subsequent semesters, as and when scheduled.
- 6.3 A student shall register for all subjects for total of 88 credits as specified and listed in the course structure for the chosen specialization, put in required the attendance and fulfill the academic requirements for securing 88 credits obtaining a minimum of 'B' Grade or above in each subject, and all 88 credits securing Semester Grade Point Average (SGPA) ≥6.0 (in each semester) and final Cumulative Grade Point Average (CGPA) (i.e., CGPA at the end of PGP) ≥ 6.0, to complete the PGP successfully.
- Note: (1) The SGPA will be computed and printed on the marks memo only if the candidate passes in all the subjects offered and gets minimum B grade in all the subjects.
 - (2) CGPA is calculated only when the candidate passes in all the subjects offered in all the semesters
- **6.4** Marks and Letter Grades obtained in all those subjects covering the above specified 88 credits alone shall be considered for the calculation of final CGPA, which will be indicated in the Grade Card /Marks Memo of second year second semester.
- 6.5 If a student registers for extra subject(s) (in the parent department or other departments/ branches of Engineering) other than those listed subjects totaling to 88 credits as specified in the course structure, the performance in extra subject(s) (although evaluated and graded using the same procedure as that of the required 88 credits) will not be taken into account while calculating the SGPA and CGPA. For such extra subject(s) registered, percentage of

marks and Letter Grade alone will be indicated in the Grade Card/Marks Memo, as a performance measure, subject to completion of the attendance and academic requirements as stated in items 5 and 6.1 - 6.3.

- **6.6** When a student is detained due to shortage of attendance in any subject(s) in any semester, no Grade allotment will be made for such subject(s). However, he is eligible for reregistration of such subject(s) in the subsequent semester(s), as and when next offered, with the academic regulations of the batch into which he is re-registered, by paying the prescribed fees per subject. In all these re-registration cases, the student shall have to secure a fresh set of internal marks and Semester End Examination marks for performance evaluation in such subject(s), and SGPA/CGPA calculations.
- 6.7 A student eligible to appear for the Semester End Examination in any subject, but absent from it or failed (failing to secure 'B' Grade or above), may reappear for that subject at the supplementary examination as and when conducted. In such cases, his Internal Marks assessed earlier for that subject will be carried over, and added to the marks secured in the supplementary examination, for the purpose of evaluating his performance in that subject.
- 6.8 A Student who fails to earn 88 credits as per the specified course structure, and as indicated above, within **four** academic years from the date of commencement of his first year first semester, shall forfeit his seat in M.Tech. programme and his admission **shall stand cancelled.**

7.0 Evaluation - Distribution and Weightage of Marks

The performance of a student in each semester shall be evaluated subject- wise (irrespective of credits assigned) for a maximum of 100 marks. The M.Tech. project work (major project) will also be evaluated for 100 marks.

- **7.1** For the theory subjects 75 marks shall be awarded for the performance in the Semester End Examination and 25 marks shall be awarded for Continuous Internal Evaluation (CIE). The Continuous Internal Evaluation shall be made based on the average of the marks secured in the two Mid-Term Examinations conducted, first Mid-Term examinations in the middle of the Semester and second Mid-Term examinations during the last week of instruction. Each Mid-Term Examination shall be conducted for a total duration of 120 minutes with Part 'A' as compulsory consisting of 5 questions carrying 2 marks each (10 marks), and Part 'B' with 3 questions to be answered out of 5 questions, each question carrying 5 marks (15 marks). The details of the Question Paper pattern for Semester End Examination (Theory) are given below:
 - The Semester End Examination will be conducted for 75 marks. It consists of two parts. i).Part A for 25 marks, ii). Part B for 50 marks.
 - Part A is compulsory and consists of 5 questions, one from each unit and carrying 5 marks each.
 - Part B consists of 5 questions carrying 10 marks each. There will be two questions from each unit and only one should be answered.
- **7.2** For practical subjects, 75 marks shall be awarded for performance in the Semester End Examinations and 25 marks shall be awarded for day-to-day performance as Internal Marks.

- **7.3** For conducting laboratory end examinations of all PG Programmes, one internal examiner and one external examiner are to be appointed by the Principal of the College and this is to be informed to the Director of Evaluation within two weeks, before commencement of the lab end examinations. The external examiner should be selected from outside the College concerned but within the cluster. No external examiner should be appointed from any other College in the same cluster/any other cluster which is run by the same Management.
- **7.4** There shall be two seminar presentations during I year I semester and II semester respectively. For seminar, a student shall collect the literature on the advanced topic in relevant fields and critically review the literature and submit it to the department in a form of report and shall make an oral presentation before the Department Academic Committee consisting of Head of the Department, seminar coordinator and two other senior faculty members of the department. For each Seminar there will be only internal evaluation for 100 marks. A candidate has to secure a minimum of 50% of marks to be declared successful. If he fails to obtain the minimum mark, he has to reappear for the seminar during the supplementary examinations. The word 'Seminar' implies presentation of Technical Report, presentation/ discussion on the state of Art of Technology.
- 7.5 Technical Paper Writing shall cover concepts of abstract, introduction, material and methods, conclusion, references, acknowledgement etc of advanced topics in a branch of Engineering through the medium of attending seminars/ referring to peer reviewed journals, which will enhance the skill of writing technical reports. The students shall not be required to give oral presentation of technical paper. The report shall be presented as a printed document for evaluation. Evaluation shall be made solely by the teacher, but may be moderated by committees appointed by the Head of the Department as per Institute rules.
- **7.6** There shall be a Comprehensive Viva-Voce in II year I Semester. The Comprehensive Viva-Voce is intended to assess the student's understanding of various subjects he has studied during the M.Tech. course of study. The Head of the Department shall be associated with the conduct of the Comprehensive Viva-Voce through a Committee. The Committee shall consist of Head of the Department, one senior faculty member and an external examiner. The external examiner shall be appointed by the Principal of the college concerned and this is to be informed to the Director of Evaluation within two weeks. The external examiner should be selected from outside the College concerned but within the cluster. No external examiner should be appointed from any other College in the same cluster/any other cluster which is run by the same Management. There are no internal marks for the Comprehensive Viva-Voce and it is evaluated for a maximum of 100 marks. A candidate has to secure a minimum of 50% of marks to be declared successful. If he fails to obtain the minimum marks, he has to reappear for the viva-voce during the supplementary examinations.
- 7.7 Every candidate shall be required to submit a thesis or dissertation on a topic approved by the Project Review Committee.
- **7.8** A Project Review Committee (PRC) shall be constituted with the Head of the Department as Chairperson, Project Supervisor and one senior faculty member of the Departments offering the M. Tech. programme.
- **7.9** Registration of Project Work: A candidate is permitted to register for the project work after satisfying the attendance requirement in all the subjects, both theory and practicals.
- **7.10** After satisfying 7.9, a candidate has to present in Project Work Review I, in consultation with his Project Supervisor, the title, objective and plan of action of his project work to the

Project Work Review Committee (PRC) for approval within four weeks from the commencement of Second year First Semester. Only after obtaining the approval of the PRC can the student initiate the Project work.

- **7.11** If a candidate wishes to change his supervisor or topic of the project, he can do so with the approval of the PRC. However, the PRC shall examine whether or not the change of topic/supervisor leads to a major change of his initial plans of project proposal. If yes, his date of registration for the project work starts from the date of change of Supervisor or topic as the case may be.
- 7.12 A candidate shall submit his project progress report in two stages at least with a gap of **three** months between them.
- **7.13** The work on the project shall be initiated at the beginning of the II year and the duration of the project is two semesters. A candidate is permitted to submit Project Thesis only after successful completion of all theory and practical courses with the approval of PRC not earlier than 40 weeks from the date of approval of the project work. For the approval of PRC the candidate shall submit the draft copy of thesis to the Head of the Department and make an oral presentation before the PRC.
- **7.14** The Project Work Review II in II Year I Sem. carries internal marks of 100. Evaluation should be done by the PRC for 50 marks and the Supervisor will evaluate the work for the other 50 marks. The Supervisor and PRC will examine the Problem Definition, Objectives, Scope of Work, Literature Survey in the same domain and progress of the Project Work. A candidate has to secure a minimum of 50% of marks to be declared successful in Project Work Review II. If he fails to obtain the minimum required marks, he has to reappear for Project Work Review-II as and when conducted.
- **7.15** The Project Work Review III in II Year II Sem. carries 100 internal marks. Evaluation should be done by the PRC for 50 marks and the Supervisor will evaluate it for the other 50 marks. The PRC will examine the overall progress of the Project Work and decide whether or not the Project is eligible for final submission. A candidate has to secure a minimum of 50% of marks to be declared successful in Project Work Review III. If he fails to obtain the required minimum marks, he has to reappear for Project Work Review III as and when conducted. For Project Evaluation (Viva Voce) in II Year II Sem. there are external marks of 100 and it is evaluated by the external examiner. The candidate has to secure a minimum of 50% marks in Project Evaluation (Viva-Voce) examination.
- 7.16 Project Work Reviews II and III shall be conducted in phase I (Regular) and Phase II (Supplementary). Phase II will be conducted only for unsuccessful students in Phase I. The unsuccessful students in Project Work Review II (Phase II) shall reappear for it at the time of Project Work Review III (Phase I). These students shall reappear for Project Work Review III in the next academic year at the time of Project Work Review II only after completion of Project Work Review II, and then Project Work Review III follows. The unsuccessful students in Project Work Review III (Phase II) shall reappear for Project Work Review III in the next academic year only at the time of Project Work Review II (Phase I).
- 7.17 After approval from the PRC, a soft copy of the thesis should be submitted for <u>ANTI-PLAGIARISM</u> check and the plagiarism report should be submitted to the University and be included in the final thesis. The Thesis will be accepted for submission, if the similarity index is less than 30%. If the similarity index has more than the required_percentage, the

student is advised to modify accordingly and re-submit the soft copy of the thesis after one month. The maximum number of re-submissions of thesis after plagiarism check is limited to TWO. The candidate has to register for the Project work and work for two semesters. After three attempts, the admission is liable to be cancelled. The college authorities are advised to make plagiarism check of every soft copy of theses before submissions.

- **7.18** Three copies of the Project Thesis certified by the supervisor shall be submitted to the College/School/Institute, after submission of a research paper related to the project work in a UGC approved journal. A copy of the submitted research paper shall be attached to thesis.
- **7.19** The thesis shall be adjudicated by an external examiner selected by the University. For this, the Principal of the College/School/Institute shall submit a panel of **three** examiners from among the list of experts in the relevant specialization as submitted by the supervisor concerned and Head of the Department.
- **7.20** If the report of the external examiner is unsatisfactory, the candidate shall revise and resubmit the Thesis. If the report of the examiner is unsatisfactory again, the thesis shall be summarily rejected. Subsequent actions for such dissertations may be considered, only on the specific recommendations of the external examiner and /or Project work Review Committee. No further correspondence in this matter will be entertained, if there is no specific recommendation for resubmission.
- **7.21** If the report of the examiner is satisfactory, the Head of the Department shall coordinate and make arrangements for the conduct of Project Viva- Voce examination. The Project Viva-Voce examination shall be conducted by a board consisting of the Supervisor, Head of the Department and the external examiner who adjudicated the Thesis. The candidate has to secure a minimum of 50% of marks in Project Evaluation (Viva-Voce) examination.
- **7.22** If he fails to fulfill the requirements as specified in 7.21, he will reappear for the Viva-Voce examination only after three months. In the reappeared examination also, if he fails to fulfill the requirements, he will not be eligible for the award of the degree, unless he is asked to revise and resubmit his project work by the board within a specified time period (within **four** years from the date of commencement of his first year first semester).
- **7.23** The Project Viva-Voce External examination marks must be submitted to the University on the day of the examination.

8.0 Re-Admission/Re-Registration

8.1 Re-Admission for Discontinued Student

A student, who has discontinued the M.Tech. degree programme due to any reason whatsoever, may be considered for '**readmission'** into the same degree programme (with the same specialization) with the academic regulations of the batch into which he gets readmitted, with prior permission from the authorities concerned, subject to item 6.6.

8.2 If a student is detained in a subject (s) due to shortage of attendance in any semester, he may be permitted to **re-register** for the same subject(s) in the same category (core or elective group) or equivalent subject, if the same subject is not available, as suggested by the Board of Studies of that department, as and when offered in the subsequent semester(s), with the

academic regulations of the batch into which he seeks re-registration, with prior permission from the authorities concerned, subject to item 3.2

8.3 A candidate shall be given one chance to re-register for a maximum of two subjects, if the internal marks secured by a candidate are less than 50% and failed in those subjects. A candidate must re-register for failed subjects within four weeks of commencement of the class work and secure the required minimum attendance. In the event of the student taking this chance, his Continuous Internal Evaluation (internal) marks and Semester End Examination marks obtained in the previous attempt stand cancelled.

9.0 Examinations and Assessment - The Grading System

- **9.1** Grades will be awarded to indicate the performance of each student in each Theory Subject, or Lab/Practicals, or Seminar, or Technical Paper Writing or Project, etc., based on the % of marks obtained in CIE + SEE (Continuous Internal Evaluation + Semester End Examination, both taken together) as specified in Item 7 above, and a corresponding Letter Grade shall be given.
- **9.2** As a measure of the student's performance, a 10-point Absolute Grading System using the following Letter Grades (UGC Guidelines) and corresponding percentage of marks shall be followed:

% of Marks Secured in a subject/Course (Class Intervals)	Letter Grade (UGC Guidelines)	Grade Points
90% and above (\ge 90%, \le 100%)	0	10
	(Outstanding)	
Below 90% but not less than 80%	A^+	9
(≥80%, <90%)	(Excellent)	
Below 80% but not less than 70%	А	8
(≥70%, <80%)	(Very Good)	
Below 70% but not less than 60%	B ⁺	7
(≥60%, <70%)	(Good)	
Below 60% but not less than 50%	В	6
$(\geq 50\%, <60\%)$	(above Average)	
Below 50% (< 50%)	F	0
	(FAIL)	
Absent	Ab	0

9.3 A student obtaining F Grade in any Subject is deemed to have 'failed' and is required to reappear as 'Supplementary Candidate' for the Semester End Examination (SEE), as and when conducted. In such cases, his Internal Marks (CIE Marks) in those subjects will remain as obtained earlier.

- **9.4** If a student has not appeared for the examinations, 'Ab' Grade will be allocated to him for any subject and shall be considered 'failed' and will be required to reappear as 'Supplementary Candidate' for the Semester End Examination (SEE), as and when conducted.
- **9.5** A Letter Grade does not imply any specific marks percentage; it is only the range of percentage of marks.
- **9.6** In general, a student shall not be permitted to repeat any Subject/ Course (s) only for the sake of 'Grade Improvement' or 'SGPA/ CGPA Improvement'.
- **9.7** A student earns Grade Point (GP) in each Subject/ Course, on the basis of the Letter Grade obtained by him in that Subject/ Course. The corresponding 'Credit Points' (CP) are computed by multiplying the Grade Point with Credits for that particular Subject/ Course.

Credit Points (CP) = Grade Point (GP) x Credits For a Course

- **9.8** The student passes the Subject/ Course only when he gets $GP \ge 6$ (B Grade or above).
- 9.9 The Semester Grade Point Average (SGPA) is calculated by dividing the Sum of Credit Points (Σ CP) secured from ALL Subjects/ Courses registered in a Semester, by the Total Number of Credits registered during that Semester. SGPA is rounded off to TWO Decimal Places. SGPA is thus computed as

SGPA = { $\sum_{i=1}^{N} C_i G_i$ } / { $\sum_{i=1}^{N} C_i$ } For each Semester,

where 'i' is the Subject indicator index (taking into account all Subjects in a Semester), 'N' is the no. of Subjects 'REGISTERED' for the Semester (as specifically required and listed under the Course Structure of the parent Department), C_i is the no. of Credits allotted to the ith Subject, and G_i represents the Grade Points (GP) corresponding to the Letter Grade awarded for that ith Subject.

9.10 The Cumulative Grade Point Average (CGPA) is a measure of the overall cumulative performance of a student over all Semesters considered for registration. The CGPA is the ratio of the Total Credit Points secured by a student in ALL registered Courses in ALL Semesters, and the Total Number of Credits registered in ALL the Semesters. CGPA is rounded off to TWO Decimal Places. CGPA is thus computed from the I Year Second Semester onwards, at the end of each Semester, as per the formula

CGPA = { $\sum_{j=1}^{M} C_j G_j$ } / { $\sum_{j=1}^{M} C_j$ } ... for all S Semesters registered (ie., upto and inclusive of S Semesters, S ≥ 2),

where 'M' is the TOTAL no. of Subjects (as specifically required and listed under the Course Structure of the parent Department) the Student has 'REGISTERED' for from the 1st Semester onwards upto and inclusive of the Semester S (obviously M > N), 'j' is the Subject indicator index (taking into account all Subjects from 1 to S Semesters), C_j is the no. of Credits allotted to the jth Subject, and G_j represents the Grade Points (GP) corresponding to the Letter Grade awarded for that jth Subject. After registration and completion of I Year I Semester however, the SGPA of that Semester itself may be taken as the CGPA, as there are no cumulative effects.

Illustration of calculation of SGPA

Course/Subject	Credits	Letter Grade	Grade points	Credit Points			
Course 1	4	A 8		4*8 = 32			
Course 2	4	0	10	4*10 = 40			
Course 3	4	В	6	4*6 = 24			
Course 4	3	В	6	3*6 = 18			
Course 5	3	A+	9	3*9 = 27			
Course 6	3	В	6	3*6 = 18			
	21			159			
SGPA = 159/21 = 7.57							

Illustration of calculation of CGPA

Semester	Credits	SGPA	Credits * SGPA				
Semester I	24	7	24*7 = 168				
Semester II	24	6	24*6 = 144				
Semester III	24	6.5	24*6.5 = 156				
Semester IV	24	6	24*6 = 144				
96 612							
CGPA = 612/96 = 6.37							

10.0 Award of Degree and Class

10.1 If a student who registers for all the specified Subjects/ Courses as listed in the Course Structure, satisfies all the Course Requirements, and passes the examinations prescribed in the entire PG Programme (PGP), and secures the required number of **88** Credits (with CGPA ≥6.0), shall be declared to have 'QUALIFIED' for the award of the M.Tech. Degree in the chosen Branch of Engineering and Technology with the specialization that he was admitted into.

10.2 Award of Class

After a student has earned the requirements prescribed for the completion of the programme and is eligible for the award of M.Tech. Degree, he shall be placed in one of the following three classes based on the CGPA:

Class Awarded	CGPA
First Class with Distinction	≥ 7.75
First Class	6.75≤ CGPA < 7.75
Second Class	$6.00 \leq CGPA < 6.75$

A student with final CGPA (at the end of the **PGP**) < 6.00 shall not be eligible for the Award of Degree.

11.0 Withholding of Results

If the student has not paid the dues, if any, to the University or if any case of indiscipline is pending against him, the result and degree of the student will be withheld and he will not be allowed into the next semester.

12.0. Transitory Regulations

- **12.1** A student who has been detained in any semester of I Year of R13/R15 Regulations due to lack of attendance, shall be permitted to join the same semester of I Year of R17 Regulations and he is required to complete the study of M.Tech programme within the stipulated period of four academic years from the date of first admission in I Year I semester. The R17 Academic Regulations under which a student has been readmitted shall be applicable to that student from that semester.
- **12.2** Candidate detained due to shortage of attendance in one or more subjects is eligible for reregistration of maximum of two earlier or equivalent subjects at a time as and when offered.
- 12.3 The candidate who fails in any subject under R13/R15 regulations will be given two chances to pass the same subject in the same regulations; otherwise, he has to identify an equivalent subject and fulfill the academic requirements of that subject as per R17 Academic Regulations.
- **12.4** For student readmitted to R17 Regulations, the maximum credits that a student acquires for the award of the degree, shall be the sum of the total number of credits secured in R13/R15 regulations of his/her study including R17 Regulations.
- **12.5** If a student readmitted to R17 Regulations, has any subject with 80% of syllabus common with his/her previous regulations, that particular subject in R17 regulations will be substituted by another subject to be suggested by the university.

13.0 General

- **13.1 Credit**: A unit by which the course work is measured. It determines the number of hours of instructions required per week. One credit is equivalent to one hour of teaching (lecture or tutorial) or two hours of practical work/field work per week.
- **13.2** Credit Point: It is the product of grade point and number of credits for a course.
- **13.3** Wherever the words "he", "him", "his", occur in the regulations, they shall include "she", "her".
- **13.4** The academic regulation should be read as a whole for the purpose of any interpretation.
- **13.5** In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the University is final.
- **13.6** The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.

MALPRACTICES RULES DISCIPLINARY ACTION FOR / IMPROPER CONDUCT IN EXAMINATIONS

S.No	Nature of Malpractices/Improper conduct	Punishment
	If the candidate:	
1.(a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject to the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination).	Expulsion from the examination hall and cancellation of the performance in that subject only.
(b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. Incase of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject to the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.
3.	Impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate, who has been impersonated, shall be cancelled in all the subjects of the examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also

		debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.
4.	Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
5.	Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject.
6.	Refuses to obey the orders of the Chief Superintendent/Assistant — Superintendent/ any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in-charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other	Incase of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.

act of misconduct or mischief which result in damage to or destruction of properly in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination. Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is subject to the academic regulations in connection with forfeiture of seat. 8. Possess any lethal weapon or firearm in the examination hall. Expulsion from the examination hall and cancellation of the subjects the candidate is subject to the academic regulations in connection with forfeiture of seat. 9. If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice to 8. Student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice to 8. Student of the college expulsion from the examinations of the subject of that semester/year. The candidate is also debarred and forfeits the seat. 9. If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause6 to 8. Student of the college expulsion from the examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the			
 Beyonsmither in the service of the script or intentionally tears of the script or any par there of inside or outside the examination hall. Service of the examination hall. Concellation of performance in that subject of the seminations of the subjects of that semester/year. The candidate is subject to the academic regulations in connection with forfeiture of seat. Possess any lethal weapon or firearm in the examination hall. Possess any lethal weapon or firearm in the examination hall. Possess any lethal weapon or firearm in the examination hall. Expulsion from the examination hall and cancellation of the subjects the candidate is subject to the academic regulations in connection with forfeiture of seat. Possess any lethal weapon or firearm in the examination hall. Service of the subjects of that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. If student of the college, who is not a candidate for the particular examination hall and cancellation of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. If student of the college, who is not a candidate for the particular examination of the subject and all other subjects the candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them. 		result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the	
 9. If student of the college, who is not a candidate for the particular examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. 9. If student of the college, who is not a candidate for the particular examination hall and cancellation of the performance in that subject and all other subjects of the college indulges in any malpractice or improper conduct mentioned in clause6 to 8. 9. If student of the college, who is not a candidate for the particular examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. 	7.	answer script or intentionally tears of the script or any par there of inside or	cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with
candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause6 to 8.	8.		cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also
10. Comes in a drunken condition to the Expulsion from the examination hall and		candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause6	examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will
r · · · · · · · · · · · · · · · · · · ·	10.	Comes in a drunken condition to the	Expulsion from the examination hall and

	examination hall.	cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.
11.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.
12.	If any malpractice is detected which is not covered in the above clauses1to11shall be reported to the University for further action to award suitable punishment.	

Malpractices identified by squad or special invigilators

- 1. Punishments to the candidates as per the above guidelines.
- 2. Punishment for institutions: (if the squad reports that the college is also involved in encouraging malpractices)
 - (i) A show cause notice shall be issued to the college.
 - (ii) Impose a suitable fine on the college.
 - (iii) Shifting the examination centre from the college to another college for a specific period of not less than one year

M. Tech in COMPUTER SCIENCE AND ENGINEERING Common to (CS, CSE)

EFFECTIVE FROM ACADEMIC YEAR 2017- 18 ADMITTED BATCH

COURSE STRUCTURE AND SYLLABUS

I Semester

Category	Course Title	Int. marks	Ext. marks	L	Т	Ρ	С
PC-1	Advanced Algorithms	25	75	4	0	0	4
PC-2	Computer Networking	25	75	4	0	0	4
PC-3	Software Engineering	25	75	4	0	0	4
PE-1	 Network Security and Cryptography Mobile Application Development Graph Theory Internet of Things 	25	75	3	0	0	3
PE-2	 Game Theory Parallel and Distributed Algorithms Software Architecture and Design Patterns Embedded Systems 	25	75	3	0	0	3
OE-1	*Open Elective – 1	25	75	3	0	0	3
Laboratory I	Advanced Algorithms Lab	25	75	0	0	3	2
Seminar I	Seminar-I	100	0	0	0	3	2
	Total	275	525	21	0	6	25

II Semester

Category	Course Title	Int. marks	Ext. marks	L	Т	Ρ	С
PC-4	Network Programming	25	75	4	0	0	4
PC-5	Distributed Systems and Cloud Computing	25	75	4	0	0	4
PC-6	Theory of Computation	25	75	4	0	0	4
PE-3	 Data Warehousing and Data Mining Storage Area Networks Semantic Web and Social Networks Cyber Security 	25	75	3	0	0	3
PE4	 Big Data Analytics Soft Computing Software Process and Project Management Machine Learning 	25	75	3	0	0	3
OE-2	*Open Elective – 2	25	75	3	0	0	3
Laboratory II	Internet Technologies and Services Lab	25	75	0	0	3	2
Seminar II	Seminar -II	100	0	0	0	3	2
	Total	275	525	21	0	6	25

III Semester

Course Title	Int. marks	Ext. marks	L	Т	Р	С
Technical Paper Writing	100	0	0	3	0	2
Comprehensive Viva-Voce	0	100	0	0	0	4
Project work Review II	100	0	0	0	22	8
Total	200	100	0	3	22	14

IV Semester

Course Title	Int. marks	Ext. marks	L	Т	Р	С
Project work Review III	100	0	0	0	24	8
Project Evaluation (Viva-Voce)	0	100	0	0	0	16
Total	100	100	0	0	24	24

*Open Elective subjects must be chosen from the list of open electives offered by OTHER departments.

For Project review I, please refer 7.10 in R17 Academic Regulations.

M. Tech. I Year – I Sem CSE

ADVANCED ALGORITHMS (PC -1)

Course Objectives:

- The fundamental design, analysis, and implementation of basic data structures.
- Basic concepts in the specification and analysis of programs.
- Principles for good program design, especially the uses of data abstraction.
- Significance of algorithms in the computer field
- Various aspects of algorithm development
- Qualities of a good solution

Unit - I : Introduction - Role of algorithms in computing, Analyzing algorithms, Designing Algorithms, Growth of Functions, Divide and Conquer- The maximum-subarray problem, Strassen's algorithms for matrix multiplication, The substitution method for solving recurrences, The recurrence-tree method for solving recurrence, The master method for solving recursions, Probabilistic analysis and random analysis.

Unit - II: Review of Data Structures- Elementary Data Structures, Hash Tables, Binary Search Trees, Red-Black Trees.

Unit - III: Dynamic Programming - Matrix-chain multiplication, Elements of dynamic programming, Longest common subsequence, Greedy Algorithms - Elements of the greedy strategy, Huffman codes, Amortized Analysis - Aggregate analysis, The accounting method, The potential method, Dynamic tables.

Unit - IV: Graph Algorithms - Elementary Graph Algorithms, Minimal spanning trees, Single-Source Shortest Paths, Maximum flow.

Unit - V: NP-Complete & Approximate Algorithms-Polynomial time, Polynomial-time verification, NP-completeness and reducibility, NP-complete & approximation problems - Clique problem, Vertex-cover problem, formula satisfiability, 3 CNF Satisfiability, The vertex-cover problem, The traveling-salesman problem, The subset-sum problem.

TEXT BOOKS:

- 1. "Introduction to Algorithms", Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Third *Edition*, PHI Publication.
- 2. "Data Structures and Algorithms in C++", M.T. Goodrich, R. Tamassia and D.Mount, Wiley India.

REFERENCES:

- 1. Fundamentals of Computer Algorithms, Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekaran, Second Edition, Galgotia Publication
- 2. Data structures with C++, J. Hubbard, Schaum's outlines, TMH.
- 3. Data structures and Algorithm Analysis in C++, 3rd edition, M. A. Weiss, Pearson.
- 4. Classic Data Structures, D. Samanta, 2nd edition, PHI.

M. Tech. I Year - I Sem. (CSE)

COMPUTER NETWORKING (PC -2)

UNIT-1

The internet architecture, Access Networks, The network Core, Peer-to-Peer Networks, Content Distribution Networks, Delay Tolerant Networks, Circuit Switching vs. Packet switching, Packet switching Delays and congestion, Client/Server and Peer-to-Peer Architectures, MAC and LLC, Virtual LAN, Asynchronous Transfer Mode (ATM)

UNIT-2

Network Address Translator, Internet Control Message Protocol, SNMP, CIDR, IPv6, Routing Protocol Basics in advanced networks, Routing Information Protocol (RIP), Interior Gateway Routing Protocol (IGRP), Switching Services, Spanning Tree Protocol (STP), Standard Network Management Protocol.

UNIT-3

TCP and Mobile TCP, TCP Tahoe and TCP Reno, High speed TCP, Coexistence of UDP and TCP flows, HTTP and HTTPS, FTP and SFTP, Domain Name Service, TCP and UDP sockets

UNIT-4

Introduction to traffic Engineering, Requirement Definition for Traffic Engineering, Traffic Sizing, Traffic Characteristics, Delay Analysis, Connectivity and Availability, Introduction to Multimedia Services, Explaining Transmission of Multimedia over the Internet.

Introduction, Wireless Links and Network Characteristics, CDMA, WiFi: 802.11, Wireless LANs, The 802.11 Architecture, The 802.11 MAC Protocol, The IEEE 802.11 Frame, Mobility in the Same IP Subnet, Advanced Features in 802.11, Personal Area Networks: Bluetooth and Zigbee, Cellular Internet Access, An Overview of Cellular Network Architecture, 3G Cellular Data Networks: Extending the Internet to Cellular Subscribers, On to 4G: LTE, Mobility Management: Principles, Addressing, Routing to a Mobile Node, Mobile IP ,Managing Mobility in Cellular Networks, Routing Calls to a Mobile User, Handoffs in GSM, Wireless and Mobility: Impact on Higher-Layer Protocols

UNIT-5

Explaining IP Multicasting, VOIP, Unified Communication, Virtual Networking, Data center Networking, Introduction to Optical Networking, SONET /SDH Standard, Next generation cellular networks, Secure Socket Layer, IP Sec, TLS, Kerberos, Domain name system Protection.

TEXT BOOKS:

- 1. Computer Networking: A Top-Down Approach, 6/e, James F. Kurose and Keith W. Ross, Pearson Education, 2012.
- 2. Larry L. Peterson and Bruce S. Davie, Computer Networks: A systems approach, Morgan Kaufman, 5th Edition, 2012
- 3. Data Communications and Networking, *Behrouz A. Forouzan*, Fourth Edition, Tata McGraw Hill
- 4. High Speed Networks and Internets Performance and Quality of Service, *William Stallings,* Second Edition, Pearson Education.
- 5. Top-Down Network Design, *Priscilla Oppenheimer,* Second Edition, Pearson Education (CISCO Press)

- 1. Advance Computer Network, By Dayanand Ambawade, Dr. Deven shah, Prof. Mahendra Mehra, Wiley India
- 2. CCNA Intro Study Guide Todd Lammle, Sybex
- 3. Computer Networks by Mayank Dave, Cengage.
- 4. Guide to Networking Essentials, *Greg Tomsho, Ed Tittel, David Johnson,* Fifth Edition, Thomson.
- 5. Computer Networks, Andrew S. Tanenbaum, Fourth Edition, Prentice Hall.
- 6. An Engineering Approach to Computer Networking, S. Keshav, Pearson Education.
- 7. Campus Network Design Fundamentals, *Diane Teare, Catherine Paquet,* Pearson Education (CISCO Press)
- 8. Computer Communications Networks, Mir, Pearson Education.
- 9. Chwan-Hwa (John) Wu, J. David Irwin, Introduction to computer networks and Cyber Security, CRC press, Taylor & Francis Group, 2014
- 10. Andrew S. Tanenbaum, David J. Wetherall, Computer Networks, Pearson, 5th Edition, 2014
- 11. G. Wright and W. Stevens, TCP/IP Illustrated, Volume 1 and Volume 2, Addison-Wesley, 1996

M. Tech- I Year – I Sem CSE

SOFTWARE ENGINEERING (PC - 3)

Prerequisites:

- A course on "Computer Programming and Data Structures"
- A course on "Object Oriented Programming Through Java"

Course Objectives:

- The aim of the course is to provide an understanding of the working knowledge of the techniques for estimation, design, testing and quality management of large software development projects.
- Topics include process models, software requirements, software design, software testing, software process/product metrics, risk management, quality management and UML diagrams

Course Outcomes:

- Ability to translate end-user requirements into system and software requirements, using e.g. UML, and structure the requirements in a Software Requirements Document (SRD).
- Identify and apply appropriate software architectures and patterns to carry out high level design of a system and be able to critically compare alternative choices.
- Will have experience and/or awareness of testing problems and will be able to develop a simple testing report

UNIT-I:

Introduction to Software Engineering: The evolving role of software, changing nature of software, software myths.

A Generic view of process: Software engineering- a layered technology, a process framework, the capability maturity model integration (CMMI), process patterns, process assessment, personal and team process models.

Process models: The waterfall model, incremental process models, evolutionary process models, the unified process.

UNIT-II:

Software Requirements: Functional and non-functional requirements, user requirements, system requirements, interface specification, the software requirements document.

Requirements engineering process: Feasibility studies, requirements elicitation and analysis, requirements validation, requirements management.

System models: Context models, behavioral models, data models, object models, structured methods.

UNIT-III:

Design Engineering: Design process and design quality, design concepts, the design model.

Creating an architectural design: software architecture, data design, architectural styles and patterns, architectural design, conceptual model of UML, basic structural modeling, class diagrams, sequence diagrams, collaboration diagrams, use case diagrams, component diagrams.

UNIT-IV:

Testing Strategies: A strategic approach to software testing, test strategies for conventional software, black-box and white-box testing, validation testing, system testing, the art of debugging. **Product metrics:** Software quality, metrics for analysis model, metrics for design model, metrics for source code, metrics for testing, metrics for maintenance.

UNIT-V:

Metrics for Process and Products: Software measurement, metrics for software quality.

Risk management: Reactive Vs proactive risk strategies, software risks, risk identification, risk projection, risk refinement, RMMM, RMMM plan.

Quality Management: Quality concepts, software quality assurance, software reviews, formal technical reviews, statistical software quality assurance, software reliability, the ISO 9000 quality standards.

TEXT BOOKS:

- 1. Software Engineering, A practitioner's Approach Roger S. Pressman, 6th edition, Mc Graw Hill International Edition.
- 2. Software Engineering- Sommerville, 7th edition, Pearson Education.
- 3. The unified modeling language user guide Grady Booch, James Rambaugh, Ivar Jacobson, Pearson Education.

REFERENCES:

- 1. Software Engineering, an Engineering approach- James F. Peters, Witold Pedrycz, John Wiely.
- 2. Software Engineering principles and practice- Waman S Jawadekar, The Mc Graw-Hill Companies.
- 3. Fundamentals of object oriented design using UML Meiler page-Jones: Pearson Education.

M. Tech. I Year – I Sem CSE

NETWORK SECURITY AND CRYPTOGRAPHY (Professional Elective- 1)

Course Objectives:

- Understand the basic categories of threats to computers and networks
- Understand various cryptographic algorithms.
- Describe public-key cryptosystem.
- Describe the enhancements made to IPv4 by IPSec
- Understand Intrusions and intrusion detection
- Discuss the fundamental ideas of public-key cryptography.
- Generate and distribute a PGP key pair and use the PGP package to send an encrypted email message.
- Discuss Web security and Firewalls

Course Outcomes:

- Student will be able to understand basic cryptographic algorithms, message and web authentication and security issues.
- Ability to identify information system requirements for both of them such as client and server.
- Ability to understand the current legal issues towards information security

UNIT – I

Security Concepts: Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms, A model for Network Security **Cryptography Concepts and Techniques:** Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, steganography, key range and key size, possible types of attacks.

UNIT – II

Symmetric key Ciphers: Block Cipher principles, DES, AES, Blowfish, RC5, IDEA, Block cipher operation, Stream ciphers, RC4.

Asymmetric key Ciphers: Principles of public key cryptosystems, RSA algorithm, Elgamal Cryptography, Diffie-Hellman Key Exchange, Knapsack Algorithm.

UNIT – III

Cryptographic Hash Functions: Message Authentication, Secure Hash Algorithm (SHA-512), **Message authentication codes:** Authentication requirements, HMAC, CMAC, Digital signatures, Elgamal Digital Signature Scheme.

Key Management and Distribution: Symmetric Key Distribution Using Symmetric & Asymmetric Encryption, Distribution of Public Keys, Kerberos, X.509 Authentication Service, Public – Key Infrastructure

UNIT – IV

Transport-level Security: Web security considerations, Secure Socket Layer and Transport Layer Security, HTTPS, Secure Shell (SSH)

Wireless Network Security: Wireless Security, Mobile Device Security, IEEE 802.11 Wireless LAN, IEEE 802.11i Wireless LAN Security

UNIT – V

E-Mail Security: Pretty Good Privacy, S/MIME **IP Security:** IP Security overview, IP Security architecture, Authentication Header, Encapsulating security payload, combining security associations, Internet Key Exchange

Case Studies on Cryptography and security: Secure Multiparty Calculation, Virtual Elections, Single sign On, Secure Inter-branch Payment Transactions, Cross site Scripting Vulnerability.

TEXT BOOKS:

- 1. Cryptography and Network Security Principles and Practice: William Stallings, Pearson Education, 6th Edition
- 2. Cryptography and Network Security : Atul Kahate, Mc Graw Hill, 3rd Edition

- 1. Cryptography and Network Security: C K Shyamala, N Harini, Dr T R Padmanabhan, Wiley India, 1st Edition.
- 2. Cryptography and Network Security : Forouzan Mukhopadhyay, Mc Graw Hill, 3rd Edition
- 3. Information Security, Principles, and Practice: Mark Stamp, Wiley India.
- 4. Principles of Computer Security: WM. Arthur Conklin, Greg White, TMH
- 5. Introduction to Network Security: Neal Krawetz, Cengage Learning
- 6. Network Security and Cryptography: Bernard Menezes, Cengage Learning

M. Tech. I Year – I Sem CSE

MOBILE APPLICATION DEVELOPMENT (Professional Elective- 1)

Course Objectives:

- To demonstrate their understanding of the fundamentals of Android operating systems
- To demonstrate their skills of using Android software development tools
- To demonstrate their ability to develop software with reasonable complexity on mobile platform
- To demonstrate their ability to deploy software to mobile devices
- To demonstrate their ability to debug programs running on mobile devices

Unit - I:

Introduction to Android Operating System: Android OS design and Features – Android development framework, SDK features, Installing and running applications on Eclipse platform, Creating AVDs, Types of Android applications, Best practices in Android programming, Android tools. Android application components – Android Manifest file, Externalizing resources like values, themes, layouts, Menus etc, Resources for different devices and languages, Runtime Configuration Changes Android Application Lifecycle – Activities, Activity lifecycle, activity states, monitoring state changes

Unit - II:

Android User Interface: Measurements – Device and pixel density independent measuring units Layouts – Linear, Relative, Grid and Table Layouts

User Interface (UI) Components – Editable and non editable TextViews, Buttons, Radio and Toggle Buttons, Checkboxes, Spinners, Dialog and pickers

Event Handling - Handling clicks or changes of various UI components

Fragments – Creating fragments, Lifecycle of fragments, Fragment states, Adding fragments to Activity, adding, removing, and replacing fragments with fragment transactions, interfacing between fragments and Activities, Multi-screen Activities

Unit - III

Intents and Broadcasts: Intent – Using intents to launch Activities, Explicitly starting new Activity, Implicit Intents, Passing data to Intents, Getting results from Activities, Native Actions, using Intent to dial a number or to send SMS

Broadcast Receivers – Using Intent filters to service implicit Intents, Resolving Intent filters, finding and using Intents received within an Activity

Notifications – Creating and Displaying notifications, Displaying Toasts Unit - IV

Persistent Storage: Files – Using application specific folders and files, creating files, reading data from files, listing contents of a directory Shared Preferences – Creating shared preferences, saving and retrieving data using Shared Preference

Database – Introduction to SQLite database, creating and opening a database, creating tables, inserting retrieving and deleting data, Registering Content Providers, Using content Providers (insert, delete, retrieve and update)

Unit - V

Advanced Topics: Alarms – Creating and using alarms

Using Internet Resources – Connecting to internet resource, using download manager

Location Based Services – Finding Current Location and showing location on the Map, updating location

TEXT BOOKS:

- 1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox) , 2012
- 2. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013

REFERENCES:

1. Beginning Android 4 Application Development, Wei-Meng Lee, Wiley India (Wrox), 2013

M. Tech. I Year - I Sem CSE

GRAPH THEORY (Professional Elective- 1)

Unit - I:

Introduction-Discovery of graphs, Definitions, Subgraphs, Isomorphic graphs, Matrix representations of graphs, Degree of a vertex, Directed walks, paths and cycles, Connectivity in digraphs, Eulerian and Hamilton digraphs, Eulerian digraphs, Hamilton digraphs, Special graphs, Complements, Larger graphs from smaller graphs, Union, Sum, Cartesian Product, Composition, Graphic sequences, Graph theoretic model of the LAN problem, Havel-Hakimi criterion, Realization of a graphic sequence.

Unit - II:

Connected graphs and shortest paths - Walks, trails, paths, cycles, Connected graphs, Distance, Cut-vertices and cut-edges, Blocks, Connectivity, Weighted graphs and shortest paths, Weighted graphs, Dijkstra's shortest path algorithm, Floyd-Warshall shortest path algorithm.

Unit III:

Trees- Definitions and characterizations, Number of trees, Cayley's formula, Kircho-matrix-tree theorem, Minimum spanning trees, Kruskal's algorithm, Prim's algorithm, Special classes of graphs, Bipartite Graphs, Line Graphs, Chordal Graphs, Eulerian Graphs, Fleury's algorithm, Chinese Postman problem, Hamilton Graphs, Introduction, Necessary conditions and sufficient conditions.

Unit IV:

Independent sets coverings and matchings – Introduction, Independent sets and coverings: basic equations, Matchings in bipartite graphs, Hall's Theorem, K^oonig's Theorem, Perfect matchings in graphs, Greedy and approximation algorithms.

Unit - V:

Vertex Colorings- Basic definitions, Cliques and chromatic number, Mycielski's theorem, Greedy coloring algorithm, Coloring of chordal graphs, Brooks theorem, Edge Colorings, Introduction and Basics, Gupta-Vizing theorem, Class-1 and Class-2 graphs, Edge-coloring of bipartite graphs, Class-2 graphs, Hajos union and Class-2 graphs, A scheduling problem and equitable edge-coloring.

TEXTBOOKS:

- 1. J. A. Bondy and U. S. R. Murty. Graph Theory, volume 244 of Graduate Texts in Mathematics. Springer, 1st edition, 2008.
- 2. J. A. Bondy and U. S. R. Murty. Graph Theory with Applications https://www.iro.umontreal.ca/~hahn/IFT3545/GTWA.pdf

REFERENCES:

Lecture Videos: http://nptel.ac.in/courses/111106050/13

M. Tech. I Year – I Sem CSE

INTERNET OF THINGS (Professional Elective- 1)

Course Objectives:

- To introduce the terminology, technology and its applications
- To introduce the concept of M2M (machine to machine) with necessary protocols
- To introduce the Python Scripting Language which is used in many IoT devices
- To introduce the Raspberry PI platform, that is widely used in IoT applications
- To introduce the implementation of web based services on IoT devices

Unit - I

Introduction to Internet of Things –Definition and Characteristics of IoT, Physical Design of IoT – IoT Protocols, IoT communication models, Iot Communication APIs IoT enabaled Technologies – Wireless Sensor Networks, Cloud Computing, Big data analytics, Communication protocols, Embedded Systems, IoT Levels and Templates Domain Specific IoTs – Home, City, Environment, Energy, Retail, Logistics, Agriculture, Industry, health and Lifestyle

Unit - II

IoT and M2M – Software defined networks, network function virtualization, difference between SDN and NFV for IoT

Basics of IoT System Management with NETCOZF, YANG- NETCONF, YANG, SNMP NETOPEER

Unit - III

Introduction to Python - Language features of Python, Data types, data structures, Control of flow, functions, modules, packaging, file handling, data/time operations, classes, Exception handling Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib

Unit - IV

IoT Physical Devices and Endpoints - Introduction to Raspberry PI-Interfaces (serial, SPI, I2C) Programming – Python program with Raspberry PI with focus of interfacing external gadgets, controlling output, reading input from pins.

Unit - V

IoT Physical Servers and Cloud Offerings – Introduction to Cloud Storage models and communication APIs

Webserver – Web server for IoT, Cloud for IoT, Python web application framework Designing a RESTful web API

TEXT BOOKS:

- 1. Internet of Things A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547
- Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759

M. Tech. I Year – I Sem CSE

GAME THEORY (Professional Elective- 2)

UNIT - I:

Introduction: Game Theory, Games and Solutions Game Theory and the Theory of Competitive Equilibrium, Rational Behavior, The Steady State and Deductive Interpretations, Bounded Rationality Terminology and Notation

Nash Equilibrium- Strategic Games, Nash Equilibrium Examples Existence of a Nash Equilibrium, Strictly Competitive Games, Bayesian Games: Strategic Games with Imperfect Information

UNIT - II:

Mixed, Correlated, and Evolutionary Equilibrium -Mixed Strategy Nash Equilibrium Interpretations of Mixed Strategy Nash Equilibrium Correlated Equilibrium Evolutionary Equilibrium

Rationalizability and Iterated Elimination of Dominated Actions-Rationalizability Iterated Elimination of Strictly Dominated Actions, Iterated Elimination of Weakly Dominated Actions

UNIT - III:

Knowledge and Equilibrium -A Model of Knowledge Common Knowledge, Can People Agree to Disagree?, Knowledge and Solution Concepts, The Electronic Mail Game

UNIT - IV:

Extensive Games with Perfect Information -Extensive Games with Perfect Information Subgame Perfect Equilibrium Two Extensions of the Definition of a Game The Interpretation of a Strategy , Two Notable Finite Horizon Games , Iterated Elimination of Weakly Dominated Strategies

Bargaining Games -Bargaining and Game Theory , A Bargaining Game of Alternating Offers Subgame Perfect Equilibrium Variations and Extensions

UNIT - V:

Repeated Games - The Basic Idea Infinitely Repeated Games vs.\ Finitely Repeated Games Infinitely Repeated Games: Definitions Strategies as Machines Trigger Strategies: Nash Folk Theorems Punishing for a Limited Length of Time: A Perfect Folk Theorem for the Limit of Means Criterion Punishing the Punisher: A Perfect Folk Theorem for the Overtaking Criterion Rewarding Players Who Punish: A Perfect Folk Theorem for the Discounting Criterion The Structure of Subgame Perfect Equilibria Under the Discounting Criterion Finitely Repeated Game

TEXT BOOKS:

- 1. M. J. Osborne and A. Rubinstein, A course in Game Theory, MIT Press
- 2. Roger Myerson, Game Theory, Harvard University Press
- 3. D. Fudenberg and J. Tirole, Game Theory, MIT Press

REFERENCES:

- 1. J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, New York: John Wiley and Sons.
- 2. R.D. Luce and H. Raiffa, Games and Decisions, New York: John Wiley and Sons.,
- 3. G. Owen, Game Theory, (Second Edition), New York: Academic Press,

M. Tech. I Year – I Sem CSE

PARALLEL AND DISTRIBUTED ALGORITHMS (Professional Elective- 2)

Course Objectives:

- To learn parallel and distributed algorithms development techniques for shared memory and message passing models.
- To study the main classes of parallel algorithms.
- To study the complexity and correctness models for parallel algorithms.

UNIT-I

Basic Techniques, Parallel Computers for increase Computation speed, Parallel & Cluster Computing

UNIT-II

Message Passing Technique- Evaluating Parallel programs and debugging, Portioning and Divide and Conquer strategies examples

UNIT-III

Pipelining- Techniques computing platform, pipeline programs examples

UNIT-IV

Synchronous Computations, load balancing, distributed termination examples, programming with shared memory, shared memory multiprocessor constructs for specifying parallelist sharing data parallel programming languages and constructs, open MP

UNIT-V

Distributed shared memory systems and programming achieving constant memory distributed shared memory programming primitives, algorithms – sorting and numerical algorithms.

TEXT BOOK:

1. Parallel Programming, Barry Wilkinson, Michael Allen, Pearson Education, 2nd Edition.

REFERENCE BOOK:

1. Introduction to Parallel algorithms by Jaja from Pearson, 1992.

M. Tech. I Year - I Sem CSE

SOFTWARE ARCHITECTURE AND DESIGN PATTERNS (Professional Elective- 2)

Course Objectives: After completing this course, the student should be able to:

- To understand the concept of patterns and the Catalog.
- To discuss the Presentation tier design patterns and their affect on: sessions, client access, validation, and consistency.
- To understand the variety of implemented bad practices related to the Business and Integration tiers.
- To highlight the evolution of patterns.
- To how to add functionality to designs while minimizing complexity
- To understand what design patterns really are, and are not
- To learn about specific design patterns.
- To learn how to use design patterns to keep code quality high without overdesign.

UNIT - I

Envisioning Architecture

The Architecture Business Cycle, What is Software Architecture, Architectural patterns, reference models, reference architectures, architectural structures and views.

Creating an Architecture

Quality Attributes, Achieving qualities, Architectural styles and patterns, designing the Architecture, Documenting software architectures, Reconstructing Software Architecture.

UNIT - II

Analyzing Architectures

Architecture Evaluation, Architecture design decision making, ATAM, CBAM.

Moving from one system to many

Software Product Lines, Building systems from off the shelf components, Software architecture in future.

UNIT - III

Patterns

Pattern Description, Organizing catalogs, role in solving design problems, Selection and usage.

Creational and Structural patterns

Abstract factory, builder, factory method, prototype, singleton, adapter, bridge, composite, façade, flyweight.

UNIT - IV

Behavioral patterns

Chain of responsibility, command, Interpreter, iterator, mediator, memento, observer, state, strategy, template method, visitor.

UNIT - V

Case Studies

A-7E – A case study in utilizing architectural structures, The World Wide Web - a case study in interoperability, Air Traffic Control – a case study in designing for high availability, Celsius Tech – a case study in product line development,

TEXT BOOKS:

- 1. Software Architecture in Practice, second edition, Len Bass, Paul Clements & Rick Kazman, Pearson Education, 2003.
- 2. Design Patterns, Erich Gamma, Pearson Education, 1995.

- 1. Beyond Software architecture, Luke Hohmann, Addison wesley, 2003.
- 2. Software architecture, David M. Dikel, David Kane and James R. Wilson, Prentice Hall PTR, 2001
- 3. Software Design, David Budgen, second edition, Pearson education, 2003
- 4. Head First Design patterns, Eric Freeman & Elisabeth Freeman, O'REILLY, 2007.
- 5. Design Patterns in Java, Steven John Metsker & William C. Wake, Pearson education, 2006
- 6. J2EE Patterns, Deepak Alur, John Crupi & Dan Malks, Pearson education, 2003.
- 7. Design Patterns in C#, Steven John metsker, Pearson education, 2004.
 - 8. Pattern Oriented Software Architecture, F. Buschmann & others, John Wiley & Sons.

M. Tech. I Year – I Sem CSE

EMBEDDED SYSTEMS (Professional Elective- 2)

Course Objectives:

- To explain various embedded system applications and design requirements.
- To construct embedded system hardware.
- To develop software programs to control embedded system.
- To generate product specification for embedded system.

UNIT - I

Introduction to Embedded Systems: Embedded Systems, Processor Embedded into a System, Embedded Hardware Units and Devices in a System, Embedded Software, Complex System Design, Design Process in Embedded System, Formalization of System Design, Classification of Embedded Systems

UNIT - II

8051 and Advanced Processor Architecture: 8051 Architecture, 8051 Micro controller Hardware, Input/output Ports and Circuits, External Memory, Counter and Timers, Serial data Input/output, Interrupts, Introduction to Advanced Architectures, Real World Interfacing, Processor and Memory organization - **Devices and Communication Buses for Devices Network:** Serial and parallel Devices & ports, Wireless Devices, Timer and Counting Devices, Watchdog Timer, Real Time Clock, Networked Embedded Systems, Internet Enabled Systems, Wireless and Mobile System protocols

UNIT - III

Embedded Programming Concepts: Software programming in Assembly language and High Level Language, Data types, Structures, Modifiers, Loops and Pointers, Macros and Functions, object oriented Programming, Embedded Programming in C++ & JAVA

UNIT IV

Real – Time Operating Systems: OS Services, Process and Memory Management, Real – Time Operating Systems, Basic Design Using an RTOS, Task Scheduling Models, Interrupt Latency, Response of Task as Performance Metrics - **RTOS Programming:** Basic functions and Types of RTOSES, RTOS VxWorks, Windows CE

UNIT - V

Embedded Software Development Process and Tools: Introduction to Embedded Software Development Process and Tools, Host and Target Machines, Linking and Locating Software, Getting Embedded Software into the Target System, Issues in Hardware-Software Design and Co-Design - **Testing, Simulation and Debugging Techniques and Tools:** Testing on Host Machine, Simulators, Laboratory Tools

TEXT BOOK:

1. Embedded Systems, Raj Kamal, Second Edition TMH.

- 1. Embedded/Real-Time Systems, Dr. K.V.K.K. Prasad, dream Tech press
- 2. The 8051 Microcontroller and Embedded Systems, Muhammad Ali Mazidi, Pearson.
- 3. The 8051 Microcontroller, Third Edition, Kenneth J Ayala, Thomson.

- 4. An Embedded Software Primer, David E. Simon, Pearson Education.
- 5. Micro Controllers, Ajay V Deshmukhi, TMH.
- 6. Microcontrollers, Raj kamal, Pearson Education.
- 7. Introduction to Embedded Systems, Shibu K.V, TMH.

M. Tech. I Year – I Sem CSE

ADVANCED ALGORITHMS LAB

Course Objectives:

- The fundamental design, analysis, and implementation of basic data structures.
- Basic concepts in the specification and analysis of programs.
- Principles for good program design, especially the uses of data abstraction.

Sample Problems on Data structures:

1. Write Java programs that use both recursive and non-recursive functions for implementing the following searching methods:

- a) Linear search b) Binary search
- 2. Write Java programs to implement the following using arrays and linked lists

a) List ADT

- 3. Write Java programs to implement the following using an array.
 - a) Stack ADT b) Queue ADT

4. Write a Java program that reads an infix expression and converts the expression to postfix form. (Use stack ADT).

- 5. Write a Java program to implement circular queue ADT using an array.
- 6. Write a Java program that uses both a stack and a queue to test whether the given string is a palindrome or not.
- 7. Write Java programs to implement the following using a singly linked list.

a) Stack ADT b) Queue ADT

- 8. Write Java programs to implement the deque (double ended queue) ADT using
 - a) Array b) Singly linked list c) Doubly linked list.
- 9. Write a Java program to implement priority queue ADT.
- 10. Write a Java program to perform the following operations:
 - a) Construct a binary search tree of elements.
 - b) Search for a key element in the above binary search tree.
 - c) Delete an element from the above binary search tree.
- 11. Write a Java program to implement all the functions of a dictionary (ADT) using Hashing.
- 12. Write a Java program to implement Dijkstra's algorithm for Single source shortest path problem.

13. Write Java programs that use recursive and non-recursive functions to traverse the given binary tree in

- a) Preorder b) Inorder c) Postorder.
- 14. Write Java programs for the implementation of bfs and dfs for a given graph.
- 15. Write Java programs for implementing the following sorting methods:
 - a) Bubble sort d) Merge sort g) Binary tree sort
 - b) Insertion sort e) Heap sort
 - c) Quick sort f) Radix sort
- 16. Write a Java program to perform the following operations:
 - a) Insertion into a B-tree b) Searching in a B-tree
- 17. Write a Java program that implements Kruskal's algorithm to generate minimum cost spanning tree.
- 18. Write a Java program that implements KMP algorithm for pattern matching.

- 1. Data Structures and Algorithms in java, 3rd edition, A.Drozdek, Cengage Learning.
- 2. Data Structures with Java, J.R.Hubbard, 2nd edition, Schaum's Outlines, TMH.

- 3. Data Structures and algorithms in Java, 2nd Edition, R.Lafore, Pearson Education.
- 4. Data Structures using Java, D.S.Malik and P.S. Nair, Cengage Learning.
- 5. Data structures, Algorithms and Applications in java, 2nd Edition, S.Sahani, Universities Press.
- 6. Design and Analysis of Algorithms, P. H. Dave and H.B.Dave, Pearson education.
- 7. Data Structures and java collections frame work, W. J. Collins, Mc Graw Hill.
- 8. Java: the complete reference, 7th edition, Herbert Schildt, TMH.
- 9. Java for Programmers, P. J. Deitel and H. M. Deitel, Pearson education / Java: How to Program P. J. Deitel and H. M. Deitel , 8th edition, PHI.
- 10. Java Programming, D.S. Malik, Cengage Learning.
- 11. A Practical Guide to Data Structures and Algorithms using Java, S. Goldman & K. Goldman, Chapman & Hall/CRC, Taylor & Francis Group.

(Note: Use packages like java.io, java.util, etc)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M. Tech in COMPUTER SCIENCE AND ENGINEERING Common to (CS, CSE)

EFFECTIVE FROM ACADEMIC YEAR 2017- 18 ADMITTED BATCH

COURSE STRUCTURE AND SYLLABUS

I Semester

Category	Course Title	Int. marks	Ext. marks	L	Т	Ρ	С
PC-1	Advanced Algorithms	25	75	4	0	0	4
PC-2	Computer Networking	25	75	4	0	0	4
PC-3	Software Engineering	25	75	4	0	0	4
PE-1	 Network Security and Cryptography Mobile Application Development Graph Theory Internet of Things 	25	75	3	0	0	3
PE-2	 Game Theory Parallel and Distributed Algorithms Software Architecture and Design Patterns Embedded Systems 	25	75	3	0	0	3
OE-1	*Open Elective – 1	25	75	3	0	0	3
Laboratory I	Advanced Algorithms Lab	25	75	0	0	3	2
Seminar I	Seminar-I	100	0	0	0	3	2
	Total	275	525	21	0	6	25

II Semester

Category	Course Title	Int. marks	Ext. marks	L	Т	Ρ	С
PC-4	Network Programming	25	75	4	0	0	4
PC-5	Distributed Systems and Cloud Computing	25	75	4	0	0	4
PC-6	Theory of Computation	25	75	4	0	0	4
PE-3	 Data Warehousing and Data Mining Storage Area Networks Semantic Web and Social Networks Cyber Security 	25	75	3	0	0	3
PE4	 Big Data Analytics Soft Computing Software Process and Project Management Machine Learning 	25	75	3	0	0	3
OE-2	*Open Elective – 2	25	75	3	0	0	3
Laboratory II	Internet Technologies and Services Lab	25	75	0	0	3	2
Seminar II	Seminar -II	100	0	0	0	3	2
	Total	275	525	21	0	6	25

III Semester

Course Title	Int. marks	Ext. marks	L	Т	Р	С
Technical Paper Writing	100	0	0	3	0	2
Comprehensive Viva-Voce	0	100	0	0	0	4
Project work Review II	100	0	0	0	22	8
Total	200	100	0	3	22	14

IV Semester

Course Title	Int. marks	Ext. marks	L	Т	Р	С
Project work Review III	100	0	0	0	24	8
Project Evaluation (Viva-Voce)	0	100	0	0	0	16
Total	100	100	0	0	24	24

*Open Elective subjects must be chosen from the list of open electives offered by OTHER departments.

For Project review I, please refer 7.10 in R17 Academic Regulations.

NETWORK PROGRAMMING (PC - 4)

Course Objectives:

- To understand to Linux utilities
- To understand file handling, signals
- To understand IPC, network programming in Java
- To understand processes to communicate with each other across a Computer Network.

UNIT – I

Linux Utilities- File handling utilities, Security by file permissions, Process utilities, Disk utilities, Networking utilities, Filters, Text processing utilities and Backup utilities.

Bourne again shell(bash) - Introduction, pipes and redirection, here documents, running a shell script, the shell as a programming language, shell meta characters, file name substitution, shell variables, command substitution, shell commands, the environment, quoting, test command, control structures, arithmetic in shell, shell script examples.

Review of C programming concepts-arrays, strings (library functions), pointers, function pointers, structures, unions, libraries in C.

UNIT - II

Files- File Concept, File types File System Structure, Inodes, File Attributes, file I/O in C using system calls, kernel support for files, file status information-stat family, file and record locking-lockf and fcntl functions, file permissions- chmod, fchmod, file ownership-chown, Ichown, Ichown, links-soft links and hard links – symlink, link, unlink.

File and Directory management – Directory contents, Scanning Directories- Directory file APIs.

Process- Process concept, Kernel support for process, process attributes, process control – process creation, replacing a process image, waiting for a process, process termination, zombie process, orphan process.

UNIT - III

Signals- Introduction to signals, Signal generation and handling, Kernel support for signals, Signal function, unreliable signals, reliable signals, kill, raise , alarm, pause, abort, sleep functions.

Interprocess Communication - Introduction to IPC mechanisms, Pipes- creation, IPC between related processes using unnamed pipes, FIFOs-creation, IPC between unrelated processes using FIFOs(Named pipes), differences between unnamed and named pipes, popen and pclose library functions, Introduction to message queues, semaphores and shared memory.

Message Queues- Kernel support for messages, UNIX system V APIs for messages, client/server example.

Semaphores-Kernel support for semaphores, UNIX system V APIs for semaphores.

UNIT – IV

Shared Memory- Kernel support for shared memory, UNIX system V APIs for shared memory, client/server example.

Network IPC - Introduction to Unix Sockets, IPC over a network, Client-Server model ,Address formats(Unix domain and Internet domain), Socket system calls for Connection Oriented - Communication, Socket system calls for Connectionless-Communication, Example-Client/Server Programs- Single Server-Client connection, Multiple simultaneous clients, Socket options – setsockopt, getsockopt, fcntl.

UNIT-V

Network Programming in Java-Network basics, TCP sockets, UDP sockets (datagram sockets), Server programs that can handle one connection at a time and multiple connections (using multithreaded server), Remote Method Invocation (Java RMI)-Basic RMI Process, Implementation details-Client-Server Application.

TEXT BOOKS:

- 1. Unix System Programming using C++, T.Chan, PHI.(Units II,III,IV)
- 2. Unix Concepts and Applications, 4th Edition, Sumitabha Das, TMH.(Unit I)
- 3. An Introduction to Network Programming with Java, Jan Graba, Springer, rp 2010.(Unit V)
- 4. Unix Network Programming ,W.R. Stevens, PHI.(Units II,III,IV)
- 5. Java Network Programming,3rd edition, E.R. Harold, SPD, O'Reilly.(Unit V)

- 1. Linux System Programming, Robert Love, O'Reilly, SPD.
- 2. Advanced Programming in the UNIX environment, 2nd Edition, W.R.Stevens, Pearson Education.
- 3. UNIX for programmers and users, 3rd Edition, Graham Glass, King Ables, Pearson Education.
- 4. Beginning Linux Programming, 4th Edition, N.Matthew, R.Stones, Wrox, Wiley India Edition.
- 5. Unix Network Programming The Sockets Networking API, Vol.-I,W.R.Stevens, Bill Fenner, A.M.Rudoff, Pearson Education.
- 6. Unix Internals, U.Vahalia, Pearson Education.
- 7. Unix shell Programming, S.G.Kochan and P.Wood, 3rd edition, Pearson Education.
- 8. C Programming Language, Kernighan and Ritchie, PHI

DISTRIBUTED SYSTEMS AND CLOUD COMPUTING (PC - 5)

Course Objectives:

- To explain the evolving computer model called cloud computing.
- To introduce the various levels of services that can be achieved by cloud.
- To describe the security aspects in cloud.

CourseOutcomes:

• Ability to understand the virtualization and cloud computing concepts.

UNIT- I

Systems Modeling, Clustering and Virtualization: Distributed System Models and Enabling Technologies, Computer Clusters for Scalable Parallel Computing, Virtual Machines and Virtualization of Clusters and Data centers.

UNIT- II

Foundations: Introduction to Cloud Computing, Migrating into a Cloud, Enriching the 'Integration as a Service' Paradigm for the Cloud Era, The Enterprise Cloud Computing Paradigm.

UNIT- III

Infrastructure as a Service (IAAS) & Platform and Software as a Service (PAAS / SAAS): Virtual machines provisioning and Migration services, On the Management of Virtual machines for Cloud Infrastructures, Enhancing Cloud Computing Environments using a cluster as a Service, Secure Distributed Data Storage in Cloud Computing.

Aneka, Comet Cloud, T-Systems', Workflow Engine for Clouds, Understanding Scientific Applications for Cloud Environments.

UNIT- IV

Monitoring, Management and Applications: An Architecture for Federated Cloud Computing, SLA Management in Cloud Computing, Performance Prediction for HPC on Clouds, Best Practices in Architecting Cloud Applications in the AWS cloud, Building Content Delivery networks using Clouds, Resource Cloud Mashups.

UNIT - V

Governance and Case Studies: Organizational Readiness and Change management in the Cloud age, Data Security in the Cloud, Legal Issues in Cloud computing, Achieving Production Readiness for Cloud Services.

TEXT BOOKS:

- 1. Cloud Computing: Principles and Paradigms by Rajkumar Buyya, James Broberg and Andrzej M. Goscinski, Wiley, 2011.
- 2. Distributed and Cloud Computing, Kai Hwang, Geoffery C.Fox, Jack J.Dongarra, Elsevier, 2012.

- 1. Cloud Computing : A Practical Approach, Anthony T.Velte, Toby J.Velte, Robert Elsenpeter, Tata McGraw Hill, rp2011.
- 2. Enterprise Cloud Computing, Gautam Shroff, Cambridge University Press, 2010.

- 3. Cloud Computing: Implementation, Management and Security, John W. Rittinghouse, James F.Ransome, CRC Press, rp2012.
- 4. Cloud Application Architectures: Building Applications and Infrastructure in the Cloud, George Reese, O'Reilly, SPD, rp2011.
- 5. Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance, Tim Mather, Subra Kumaraswamy, Shahed Latif, O'Reilly, SPD, rp2011.

THEORY OF COMPUTATION (PC - 6)

Course Outcomes

- Able to understand the concept of abstract machines and their power to recognize the languages.
- Able to employ finite state machines for modeling and solving computing problems.
- Able to design context free grammars for formal languages.
- Able to distinguish between decidability and undecidability.
- Able to gain proficiency with mathematical tools and formal methods.

UNIT - I:

Regular Languages –Finite Automata, Formal definition of finite automaton, Examples of finite automata, Formal definition of computation, Designing finite automata, The regular operations, Non determinism, formal definition of nondeterministic finite automaton, equivalence of NFAs and DFAs, closure under the regular operations, Regular Expressions, formal definition of a regular expression, equivalence with finite automata, Nonregular languages, The pumping lemma for regular languages.

UNIT - II :

Context-Free languages, Context-free grammars, formal definition of a Context-free grammar, Examples of context-free grammars, Designing context-free grammars, Ambiguity, Chomsky normal form, Pushdown Automata, Examples of pushdown Automata, Equivalence with context-free grammars, Non-context-free languages, The pumping lemma for context-free languages.

UNIT - III :

The Church-Turing Thesis - Turing machines, Formal definition of turing machine, Examples of turing machines, Variants of turing machines, Multitape turing machines, Nondeterministic turing machine, Enumerators, Equivalence with other models, The definition of algorithm, Hilbert's problem, Terminology of describing turing machines.

UNIT - IV:

Decidability – Decidable languages, Decidable problems concerning regular languages, Decidable problems concerning context-free languages, The halting problem, The diagonalization method, The halting method is undecidable, A turing –unrecognizable language, **Reducibility** – Undecidable problems for language theory, Reductions via computations histories, A simple undecidable problem, Mapping reducibility, computable functions, Formal definition of mapping reducibility.

UNIT - V:

Time Complexity – Measuring complexity, Big – O and small-o notation, Analyzing algorithms, Complexity relationships among models, The class P, Polynomial time, examples of problems in P, The class NP, Examples of problems in NP, The P versus NP question, NP-Completeness, polynomial time reducibility, Definition of NP-Completeness, The Cook-Levin Theorem, Additional NP-Complete problems, The vertex cover problem, The Hamiltonian path problem, The subset sum problem.

TEXTBOOKS:

1. Introduction to the theory of computation, Micheal Sipser, Third Edition, Cengage Learning.

REFERENCES:

1. Introduction to Languages and The Theory of Computation, John C Martin, TMH.

- 2. Introduction to Computer Theory, Daniel I.A. Cohen, John Wiley.
- 3. A Text book on Automata Theory, P. K. Srimani, Nasir S. F. B, Cambridge University Press.
- 4. Introduction to Formal languages Automata Theory and Computation Kamala Krithivasan, Rama R, Pearson.
- 5. Theory of Computer Science Automata languages and computation, Mishra and Chandrashekaran, 2nd edition, PHI.

DATA WAREHOUSING AND DATA MINING (PE - III)

Course Objectives:

- To develop the abilities of critical analysis to data mining systems and applications.
- To implement practical and theoretical understanding of the technologies for data mining
- To understand the strengths and limitations of various data mining models;

UNIT- I

Data mining Overview and Advanced Pattern Mining: Data mining tasks – mining frequent patterns, associations and correlations, classification and regression for predictive analysis, cluster analysis, outlier analysis; advanced pattern mining in multilevel, multidimensional space – mining multilevel associations, mining multidimensional associations, mining quantitative association rules, mining rare patterns and negative patterns.

UNIT- II

Advance Classification: Classification by back propagation, support vector machines, classification using frequent patterns, other classification methods – genetic algorithms, roughest approach, fuzz>set approach;

UNIT- III

Advance Clustering: Density - based methods –DBSCAN, OPTICS, DENCLUE; Grid-Based methods – STING, CLIQUE; Exception – maximization algorithm; clustering High- Dimensional Data; Clustering Graph and Network Data.

UNIT- IV

Web and Text Mining: Introduction, web mining, web content mining, web structure mining, we usage mining, Text mining – unstructured text, episode rule discovery for texts, hierarchy of categories, text clustering.

UNIT- V

Temporal and Spatial Data Mining: Introduction; Temporal Data Mining – Temporal Association Rules, Sequence Mining, GSP algorithm, SPADE, SPIRIT Episode Discovery, Time Series Analysis, Spatial Mining – Spatial Mining Tasks, Spatial Clustering. Data Mining Applications.

TEXT BOOKS:

- 1. Data Mining Concepts and Techniques, Jiawei Hang Micheline Kamber, Jian pei, Morgan Kaufmannn.
- 2. Data Mining Techniques Arun K pujari, Universities Press.

- 1. Introduction to Data Mining Pang-Ning Tan, Vipin kumar, Michael Steinbach, Pearson.
- 2. Data Mining Principles & Applications T.V Sveresh Kumar, B.Esware Reddy, Jagadish S Kalimani, Elsevier.

STORAGE AREA NETWORKS (PE - III)

Course Objectives:

- To understand Storage Area Networks characteristics and components.
- To become familiar with the SAN vendors and their products
- To learn Fibre Channel protocols and how SAN components use them to communicate with each other
- To become familiar with Cisco MDS 9000 Multilayer Directors and Fabric Switches Thoroughly learn Cisco SAN-OS features.
- To understand the use of all SAN-OS commands. Practice variations of SANOS features

UNIT - I:

Introduction to Storage Technology Review data creation and the amount of data being created and understand the value of data to a business, challenges in data storage and data management, Solutions available for data storage, Core elements of a data center infrastructure, role of each element in supporting business activities

UNIT - II:

Storage Systems Architecture Hardware and software components of the host environment, Key protocols and concepts used by each component ,Physical and logical components of a connectivity environment ,Major physical components of a disk drive and their function, logical constructs of a physical disk, access characteristics, and performance Implications, Concept of RAID and its components , Different RAID levels and their suitability for different application environments: RAID 0, RAID 1, RAID 3, RAID 4, RAID 5, RAID 0+1, RAID 1+0, RAID 6, Compare and contrast integrated and modular storage systems , High-level architecture and working of an intelligent storage system

UNIT - III:

Introduction to Networked Storage Evolution of networked storage, Architecture, components, and topologies of FC-SAN, NAS, and IP-SAN, Benefits of the different networked storage options, understand the need for long-term archiving solutions and describe how CAS fulfills the need, understand the appropriateness of the different networked storage options for different application environments

UNIT - IV:

Information Availability & Monitoring & Managing Datacenter List reasons for planned/unplanned outages and the impact of downtime, Impact of downtime, Differentiate between business continuity (BC) and disaster recovery (DR) ,RTO and RPO, Identify single points of failure in a storage infrastructure and list solutions to mitigate these failures , Architecture of backup/recovery and the different backup/recovery topologies, replication technologies and their role in ensuring information availability and business continuity, Remote replication technologies and their role in providing disaster recovery and business continuity capabilities

Identify key areas to monitor in a data center, Industry standards for data center monitoring and management, Key metrics to monitor for different components in a storage infrastructure, Key management tasks in a data center

UNIT - V:

Securing Storage and Storage Virtualization Information security, Critical security attributes for information systems, Storage security domains, List and analyzes the common threats in each

domain, Virtualization technologies, block-level and file-level virtualization technologies and processes

Case Studies

The technologies described in the course are reinforced with EMC examples of actual solutions. Realistic case studies enable the participant to design the most appropriate solution for given sets of criteria.

TEXT BOOK:

1. EMC Corporation, Information Storage and Management, Wiley.

- 1. Robert Spalding, "Storage Networks: The Complete Reference", Tata McGraw Hill, Osborne, 2003.
- 2. Marc Farley, "Building Storage Networks", Tata McGraw Hill ,Osborne, 2001.
- 3. Meeta Gupta, Storage Area Network Fundamentals, Pearson Education Limited, 2002.

SEMANTIC WEB AND SOCIAL NETWORKS (PE – III)

Course Objectives:

- To learn Web Intelligence
- To learn Knowledge Representation for the Semantic Web
- To learn Ontology Engineering
- To learn Semantic Web Applications, Services and Technology
- To learn Social Network Analysis and semantic web

UNIT – I:

Web Intelligence: Thinking and Intelligent Web Applications, The Information Age ,The World Wide Web, Limitations of Today's Web, The Next Generation Web, Machine Intelligence, Artificial Intelligence, Ontology, Inference engines, Software Agents, Berners-Lee www, Semantic Road Map, Logic on the semantic Web.

UNIT - II:

Knowledge Representation for the Semantic Web: Ontologies and their role in the semantic web, Ontologies Languages for the Semantic Web –Resource Description Framework(RDF) / RDF Schema, Ontology Web Language(OWL), UML, XML/XML Schema.

UNIT- III:

Ontology Engineering: Ontology Engineering, Constructing Ontology, Ontology Development Tools, Ontology Methods, Ontology Sharing and Merging, Ontology Libraries and Ontology Mapping, Logic, Rule and Inference Engines.

UNIT- IV:

Semantic Web Applications, Services and Technology: Semantic Web applications and services, Semantic Search, e-learning, Semantic Bioinformatics, Knowledge Base ,XML Based Web Services, Creating an OWL-S Ontology for Web Services, Semantic Search Technology, Web Search Agents and Semantic Methods,

UNIT - V: .Social Network Analysis and semantic web

What is social Networks analysis, development of the social networks analysis, Electronic Sources for Network Analysis – Electronic Discussion networks, Blogs and Online Communities, Web Based Networks. Building Semantic Web Applications with social network features.

TEXT BOOKS:

- 1. Thinking on the Web Berners Lee, Godel and Turing, Wiley inter science, 2008.
- 2. Social Networks and the Semantic Web, Peter Mika, Springer, 2007.

- 1. Semantic Web Technologies, Trends and Research in Ontology Based Systems, J. Davies, R. Studer, P. Warren, John Wiley & Sons.
- 2. Semantic Web and Semantic Web Services -Liyang Lu Chapman and Hall/CRC Publishers,(Taylor & Francis Group)
- 3. Information Sharing on the semantic Web Heiner Stuckenschmidt; Frank Van Harmelen, Springer Publications.
- 4. Programming the Semantic Web, T. Segaran, C.Evans, J. Taylor, O'Reilly, SPD.

CYBER SECURITY (PE - III)

Course Objectives:

- To learn about cyber crimes and how they are planned
- To learn the vulnerabilities of mobile and wireless devices
- To learn about the crimes in mobile and wireless devices

UNIT - I

Introduction to Cybercrime: Introduction, Cybercrime and Information security, who are cybercriminals, Classifications of Cybercrimes, Cybercrime: The legal Perspectives and Indian Perspective, Cybercrime and the Indian ITA 2000, A Global Perspective on Cybercrimes.

Cyber offenses: How criminals Plan Them: Introduction, How Criminals plan the Attacks, Social Engineering, Cyber stalking, Cyber cafe and Cybercrimes, Botnets: The Fuel for Cybercrime, Attack Vector, Cloud Computing.

UNIT- II

Cybercrime: Mobile and Wireless Devices: Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Organizational Security Policies an Measures in Mobile Computing Era, Laptops.

UNIT - III

Cybercrimes and Cyber security: the Legal Perspectives

Introduction

Cyber Crime and Legal Landscape around the world, Why Do We Need Cyber laws: The Indian Context, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario In India, Digital signatures and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment Cyber law, Technology and Students: Indian Scenario.

UNIT - IV

Understanding Computer Forensics

Introduction, Historical background of Cyber forensics, Digital Forensics Science, The Need for Computer Forensics, Cyber Forensics and Digital evidence, Forensics Analysis of Email, Digital Forensics Lifecycle, Chain of Custody concept, Network Forensics, Approaching a computer, Forensics Investigation, Challenges in Computer Forensics, Special Tools and Techniques Forensics Auditing

UNIT - V

Cyber Security: Organizational Implications

Introduction, Cost of Cybercrimes and IPR issues, Web threats for Organizations, Security and Privacy Implications, Social media marketing: Security Risks and Perils for Organizations, Social Computing and the associated challenges for Organizations.

TEXT BOOK:

- 1. **Cyber Security**: *Understanding Cyber Crimes, Computer Forensics and Legal Perspectives,* Nina Godbole and Sunil Belapure, Wiley INDIA.
- 2. Introduction to Cyber Security , Chwan-Hwa(john) Wu,J.David Irwin.CRC Press T&F Group

REFERENCE BOOK:

1. Cyber Security Essentials, James Graham, Richard Howard and Ryan Otson, CRC Press.

BIG DATA ANALYTICS (PE – IV)

Course Objectives:

- To understand about big data
- To learn the analytics of Big Data
- To Understand the MapReduce fundamentals

UNIT - I

Big Data Analytics: What is big data, History of Data Management ; Structuring Big Data ; Elements of Big Data ; Big Data Analytics; Distributed and Parallel Computing for Big Data;

Big Data Analytics: What is Big Data Analytics, What Big Data Analytics Isn't, Why this sudden Hype Around Big Data Analytics, Classification of Analytics, Greatest Challenges that Prevent Business from Capitalizing Big Data; Top Challenges Facing Big Data; Why Big Data Analytics Important; Data Science; Data Scientist; Terminologies used in Big Data Environments; Basically Available Soft State Eventual Consistency (BASE); Open source Analytics Tools;

UNIT - II

Understanding Analytics and Big Data: Comparing Reporting and Analysis, Types of Analytics; Points to Consider during Analysis; Developing an Analytic Team; Understanding Text Analytics; Analytical Approach and Tools to Analyze Data: Analytical Approaches; History of Analytical Tools; Introducing Popular Analytical Tools; Comparing Various Analytical Tools.

UNIT - III

Understanding MapReduce Fundamentals and HBase : The MapReduce Framework; Techniques to Optimize MapReduce Jobs; Uses of MapReduce; Role of HBase in Big Data Processing; Storing Data in Hadoop : Introduction of HDFS, Architecture, HDFC Files, File system types, commands, org.apache.hadoop.io package, HDF, HDFS High Availability; Introducing HBase, Architecture, Storing Big Data with HBase , Interacting with the Hadoop Ecosystem; HBase in Operations-Programming with HBase; Installation, Combining HBase and HDFS;

UNIT - IV

Big Data Technology Landscape and Hadoop : NoSQL, Hadoop; RDBMS versus Hadoop; Distributed Computing Challenges; History of Hadoop; Hadoop Overview; Use Case of Hadoop; Hadoop Distributors; HDFC (Hadoop Distributed File System), HDFC Daemons, read,write, Replica Processing of Data with Hadoop; Managing Resources and Applications with Hadoop YARN.

UNIT - V

Social Media Analytics and Text Mining: Introducing Social Media; Key elements of Social Media; Text mining; Understanding Text Mining Process; Sentiment Analysis, Performing Social Media Analytics and Opinion Mining on Tweets;

Mobile Analytics: Introducing Mobile Analytics; Define Mobile Analytics; Mobile Analytics and Web Analytics; Types of Results from Mobile Analytics; Types of Applications for Mobile Analytics; Introducing Mobile Analytics Tools;

TEXT BOOKS:

- 1. BIG DATA and ANALYTICS, Seema Acharya, Subhasinin Chellappan, Wiley publications.
- 2. BIG DATA, Black Book[™], DreamTech Press, 2015 Edition.
- 3. BUSINESS ANALYTICS 5e , BY Albright |Winston

- 1. Rajiv Sabherwal, Irma Becerra- Fernandez," Business Intelligence Practice, Technologies and Management", John Wiley 2011.
- 2. Lariss T. Moss, ShakuAtre, "Business Intelligence Roadmap", Addison-Wesley It Service.
- 3. Yuli Vasiliev, " Oracle Business Intelligence : The Condensed Guide to Analysis and Reporting", SPD Shroff, 2012.

SOFT COMPUTING (PE – IV)

Course Objectives:

To give students knowledge of soft computing theories fundamentals, i.e. Fundamentals of artificial and neural networks, fuzzy sets and fuzzy logic and genetic algorithms.

UNIT- I

Al Problems and Search: Al problems, Techniques, Problem Spaces and Search, Heuristic Search Techniques- Generate and Test, Hill Climbing, Best First Search Problem reduction, Constraint Satisfaction and Means End Analysis. Approaches to Knowledge Representation- Using Predicate Logic and Rules.

UNIT- II

Artificial Neural Networks: Introduction, Basic models of ANN, important terminologies, Supervised Learning Networks, Perceptron Networks, Adaptive Linear Neuron, Back propagation Network. Associative Memory Networks. Traing Algorithms for pattern association, BAM and Hopfield Networks.

UNIT- III

Unsupervised Learning Network- Introduction, Fixed Weight Competitive Nets, Maxnet, Hamming Network, Kohonen Self-Organizing Feature Maps, Learning Vector Quantization, Counter Propagation Networks, Adaptive Resonance Theory Networks. Special Networks-Introduction to various networks.

UNIT- IV

Introduction to Classical Sets (crisp Sets) and Fuzzy Sets- operations and Fuzzy sets. Classical Relations -and Fuzzy Relations- Cardinality, Operations, Properties and composition. Tolerance and equivalence relations.

Membership functions- Features, Fuzzification, membership value assignments, Defuzzification.

UNIT- V

Fuzzy Arithmetic and Fuzzy Measures, Fuzzy Rule Base and Approximate Reasoning Fuzzy Decision making

Fuzzy Logic Control Systems, Genetic Algorithm- Introduction and basic operators and terminology. Applications: Optimization of TSP, Internet Search Technique.

TEXT BOOKS:

- 1. Principles of Soft Computing- S N Sivanandam, S N Deepa, Wiley India, 2007
- 2. Soft Computing and Intelligent System Design -Fakhreddine O Karray, Clarence D Silva,. Pearson Edition, 2004.

- 1. Artificial Intelligence and Soft Computing- Behavioural and Cognitive Modeling of the Human Brain- Amit Konar, CRC press, Taylor and Francis Group.
- 2. Artificial Intelligence Elaine Rich and Kevin Knight, TMH, 1991, rp2008.
- 3. Artificial Intelligence Patric Henry Winston Third Edition, Pearson Education.
- 4. A first course in Fuzzy Logic-Hung T Nguyen and Elbert A Walker, CRC. Press Taylor and Francis Group.

SOFTWARE PROCESS AND PROJECT MANAGEMENT (PE – IV)

Course Objectives:

- Describe and determine the purpose and importance of project management from the perspectives of planning, tracking and completion of project.
- Compare and differentiate organization structures and project structures.
- Implement a project to manage project schedule, expenses and resources with the application of suitable project management tools.

UNIT- I

Software Process Maturity

Software maturity Framework, Principles of Software Process Change, Software Process Assessment, The Initial Process, The Repeatable Process, The Defined Process, The Managed Process, The Optimizing Process.

Process Reference Models

Capability Maturity Model (CMM), CMMI, PCMM, PSP, TSP.

UNIT - II

Software Project Management Renaissance

Conventional Software Management, Evolution of Software Economics, Improving Software Economics, The old way and the new way.

Life-Cycle Phases and Process artifacts

Engineering and Production stages, inception phase, elaboration phase, construction phase, transition phase, artifact sets, management artifacts, engineering artifacts and pragmatic artifacts, model based software architectures

UNIT - III

Workflows and Checkpoints of process

Software process workflows, Iteration workflows, Major milestones, Minor milestones, Periodic status assessments.

Process Planning

Work breakdown structures, Planning guidelines, cost and schedule estimating process, iteration planning process, Pragmatic planning.

UNIT - IV

Project Organizations

Line-of- business organizations, project organizations, evolution of organizations, process automation. **Project Control and process instrumentation**

The seven core metrics, management indicators, quality indicators, life-cycle expectations, Pragmatic software metrics, and metrics automation.

UNIT - V

CCPDS-R Case Study and Future Software Project Management Practices

Modern Project Profiles, Next-Generation software Economics, Modern Process Transitions.

TEXT BOOKS:

- 1. Managing the Software Process, Watts S. Humphrey, Pearson Education.
- 2. Software Project Management, Walker Royce, Pearson Education.

- 1. Effective Project Management: Traditional, Agile, Extreme, Robert Wysocki, Sixth edition, Wiley India, rp2011.
- 2. An Introduction to the Team Software Process, Watts S. Humphrey, Pearson Education, 2000
- 3. Process Improvement essentials, James R. Persse, O'Reilly, 2006
- 4. Software Project Management, Bob Hughes & Mike Cotterell, fourth edition, TMH, 2006
- 5. Applied Software Project Management, Andrew Stellman & Jennifer Greene, O'Reilly, 2006.
- 6. Head First PMP, Jennifer Greene & Andrew Stellman, O'Reilly, 2007
- 7. Software Engineering Project Managent, Richard H. Thayer & Edward Yourdon, 2nd edition, Wiley India, 2004.
- 8. The Art of Project Management, Scott Berkun, SPD, O'Reilly, 2011.
- 9. Applied Software Project Management, Andrew Stellman & Jennifer Greene, SPD, O'Reilly, rp2011.
- 10. Agile Project Management, Jim Highsmith, Pearson education, 2004.

MACHINE LEARNING (PE – IV)

Course Objectives:

- To be able to formulate machine learning problems corresponding to different applications.
- To understand a range of machine learning algorithms along with their strengths and weaknesses.
- To understand the basic theory underlying machine learning.
- To be able to apply machine learning algorithms to solve problems of moderate complexity.
- To be able to read current research papers and understands the issues raised by current research.

UNIT - I

Introduction - Well-posed learning problems, Designing a learning system, Perspectives and issues in machine learning

Concept learning and the general to specific ordering – Introduction, A concept learning task, Concept learning as search, Find-S: finding a maximally specific hypothesis, Version spaces and the candidate elimination algorithm, Remarks on version spaces and candidate elimination, Inductive bias

UNIT - II

Decision Tree learning – Introduction, Decision tree representation, Appropriate problems for decision tree learning, The basic decision tree learning algorithm, Hypothesis space search in decision tree learning, Inductive bias in decision tree learning, Issues in decision tree learning

Artificial Neural Networks – Introduction, Neural network representation, Appropriate problems for neural network learning, Perceptions, Multilayer networks and the back propagation algorithm, Remarks on the back propagation algorithm, An illustrative example face recognition Advanced topics in artificial neural networks

Evaluation Hypotheses – Motivation, Estimation hypothesis accuracy, Basics of sampling theory, A general approach for deriving confidence intervals, Difference in error of two hypotheses, Comparing learning algorithms

UNIT - III

Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum likelihood and least squared error hypotheses, Maximum likelihood hypotheses for predicting probabilities, Minimum description length principle, Bayes optimal classifier, Gibs algorithm, Naïve Bayes classifier, An example learning to classify text, Bayesian belief networks The EM algorithm

Computational learning theory – Introduction, Probability learning an approximately correct hypothesis, Sample complexity for Finite Hypothesis Space, Sample Complexity for infinite Hypothesis Spaces, The mistake bound model of learning - **Instance-Based Learning**- Introduction, k -Nearest Neighbour Learning, Locally Weighted Regression, Radial Basis Functions, Case-Based Reasoning, Remarks on Lazy and Eager Learning

Genetic Algorithms – Motivation, Genetic Algorithms, An illustrative Example, Hypothesis Space Search, Genetic Programming, Models of Evolution and Learning, Parallelizing Genetic Algorithms

UNIT - IV

Learning Sets of Rules – Introduction, Sequential Covering Algorithms, Learning Rule Sets: Summary, Learning First Order Rules, Learning Sets of First Order Rules: FOIL, Induction as Inverted Deduction, Inverting Resolution

Analytical Learning - Introduction, Learning with Perfect Domain Theories: Prolog-EBG Remarks on Explanation-Based Learning, Explanation-Based Learning of Search Control Knowledge

UNIT - V

Combining Inductive and Analytical Learning – Motivation, Inductive-Analytical Approaches to Learning, Using Prior Knowledge to Initialize the Hypothesis, Using Prior Knowledge to Alter the Search Objective, Using Prior Knowledge to Augment Search Operators,

Reinforcement Learning – Introduction, The Learning Task, Q Learning, Non-Deterministic, Rewards and Actions, Temporal Difference Learning, Generalizing from Examples, Relationship to Dynamic Programming

TEXT BOOKS:

- 1. Machine Learning Tom M. Mitchell, MGH
- 2. Machine Learning: An Algorithmic Perspective, Stephen Marsland, Taylor & Francis (CRC)

- 1. Machine Learning Methods in the Environmental Sciences, Neural Networks, William W Hsieh, Cambridge Univ Press.
- Richard o. Duda, Peter E. Hart and David G. Stork, pattern classification, John Wiley & Sons Inc., 2001
- 3. Chris Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995.
- 4. Machine Learning by Peter Flach , Cambridge.

INTERNET TECHNOLOGIES AND SERVICES LAB

Course Objectives:

- Write syntactically correct HTTP messages and describe the semantics of common HTTP methods and header fields
- Discuss differences between URIs, URNs, and URLs, and demonstrate a detailed understanding of http-scheme URLs, both relative and absolute
- Describe the actions, including those related to the cache, performed by a browser in the process of visiting a Web address
- Install a web server and perform basic administrative procedures, such as tuning communication parameters, denying access to certain domains, and interpreting an access log
- Write a valid standards-conformant HTML document involving a variety of element types, including hyperlinks, images, lists, tables, and forms
- Use CSS to implement a variety of presentation effects in HTML and XML documents, including explicit positioning of elements
- Demonstrate techniques for improving the accessibility of an HTML document

List of Sample Problems:

i) Internet Technologies

1. Develop static pages (using Only HTML) of an online Book store. The pages should resemble: <u>www.amazon.com</u> the website should consist the following pages.

Home page, Registration and user Login

User Profile Page, Books catalog

Shopping Cart, Payment By credit card

Order Conformation

2. Validate the Registration, user login, user profile and payment by credit card pages using JavaScript.

3. Create and save an XML document at the server, which contains 10 users information. Write a program, which takes User Id as an input and returns the user details by taking the user information from the XML document.

4. Install TOMCAT web server. Convert the static web pages of assignments 2 into dynamic web pages using Servlets and cookies. Hint: Users information (user id, password, credit card number) would be stored in web.xml. Each user should have a separate Shopping Cart.

5. Redo the previous task using JSP by converting the static web pages of assignments 2 into dynamic web pages. Create a database with user information and books information. The books catalogue should be dynamically loaded from the database. Follow the MVC architecture while doing the website.

6. Implement the "Hello World!" program using JSP Struts Framework.

ii)Additional Assignment Problems

Write an HTML page including any required Javascript that takes a number from one text field in the range of 0 to 999 and shows it in another text field in words. If the number is out of range, it should show "out of range" and if it is not a number, it should show "not a number" message in the result box.

Write a java swing application that takes a text file name as input and counts the characters, words

and lines in the file. Words are separated with white space characters and lines are separated with new line character.

Write a simple calculator servlet that takes two numbers and an operator (+, -, /, * and %) from an HTML page and returns the result page with the operation performed on the operands. It should check in a database if the same expression is already computed and if so, just return the value from database. Use MySQL or PostgreSQL.

Write an HTML page that contains a list of 5 countries. When the user selects a country, its capital should be printed next to the list. Add CSS to customize the properties of the font of the capital (color, bold and font size).

Write a servlet that takes name and age from an HTML page. If the age is less than 18, it should send a page with "Hello <name>, you are not authorized to visit this site" message, where <name> should be replaced with the entered name. Otherwise it should send "Welcome <name> to this site" message.

Write a calculator program in HTML that performs basic arithmetic operations (+, -, /, * and %). Use CSS to change the foreground and background color of the values, buttons and result display area separately. Validate the input strings using JavaScript regular expressions. Handle any special cases like division with zero reasonably. The screen may look similar to the following:

Value 1	Operator		Value 2		Result
	+	•		=	

Write a Java program that creates a calculator GUI, as shown in figure. Extra components may be added for convenience:

Color Scheme	Black on	White	T
0 ^ [V	+ 🔻	0) 「^ ▼
	Result	0]

The Color Scheme may be Black on White or Blue on Yellow (selectable) and accordingly all components colors must be changed. The values can be either entered or increased or decreased by a step of 10. The operators are +, -, / and * (selectable). Once any change

takes place, the result must be automatically computed by the program.

Write a Java Application that will read an XML file that contains personal information (Name, Mobile Number, age and place. It reads the information using SAX parser. After reading the information, it shows two input Text Fields in a window, one for tag name and the other for value. Once these two values are given, it should list all the records in the XML file that match the value of the given field in a text area (result box). For example, if the two text boxes are entered with "name" and "ABCD" then it should show all the records for which name is "ABCD"? An Illustration is given below that takes a mobile number and lists all the records that have the same mobile number.

Field	mobile	
¥alue	9449449449	OK
Result	abc, 22, Hyd def, 23, Delhi xxx, 44, Chennai	

Consider the following web application for implementation:

The user is first served a login page which takes user's name and password. After submitting the details the server checks these values against the data from a database and takes the following decisions.

If name and password matches, serves a welcome page with user's full name.

If name matches and password doesn't match, then serves "password mismatch" page If name is not found in the database, serves a registration page, where users full name, present user name (used to login) and password are collected. Implement this application in:

- 1. Pure JSP
- 2. Pure Servlets
- 3. Struts Framework

Implement a simple arithmetic calculator with +, -, /, *, % and = operations using Struts Framework The number of times the calculator is used should be displayed at the bottom (use session variable).

iii)Internet Technologies and Services Lab - Additional Problems

Create a web Service in Java that takes two city names from the user and returns the distance between these two from data available from a table in MySql.

Write a java and a C# client which use the above service

Write a Java program that takes a file as input and encrypts it using DES encryption. The program should check if the file exists and its size is not zero.

Write a Java program that generates a key pair and encrypts a given file using RSA algorithm.

Write a Java program that finds digest value of a given string.

Consider the following xml file for encryption

<?xml version="1.0"> <transaction> <from>12345</from> <to>54321</to> <amount>10000</amount> <secretcode>abc123</secretcode> <checksum></checksum> </transaction>

Replace <from> and <to> values with the RSA encrypted values represented with base64 encoding assuming that the public key is available in a file in local directory "pubkey.dat". Encrypt <secretcode> with AES algorithm with a password 'secret'. The checksum of all the field values concatenated with a delimiter character '+' will be inserted in the checksum and the xml file is written to encrypted.xml file.

Assume that a file 'config.xml', which has the following information:

<users>

<user> <name>abc</name> <pwd>pwd123</pwd> <role>admin</role> <md5>xxx</md5> </user>

<user> <name>def</name> <pwd>pwd123</pwd> <role>guest</role> <md5>xxx</md5> </user>

</users>

Replace name and role with DES encrypted values and pwd with RSA encrypted values (represent the values with base64 encoding). The public key is available in "public.key" file in current directory. Replace xxx with respective MD5 values of all the fields for each user. Write the resulting file back to config.xml.

Write an HTML page that gives 3 multiple choice (a,b,c and d) questions from a set of 5 preloaded questions randomly. After each question is answered change the color of the question to either green or blue using CSS. Finally on clicking OK button that is provided, the score should be displayed as a pop-up window. Use Java Script for dynamic content.

Write an HTML page that has 3 countries on the left side ("USA", "UK" and "INDIA") and on the right side of each country, there is a pull-down menu that contains the following entries: ("Select Answer", "New Delhi", "Washington" and "London"). The user will match the Countries with their respective capitals by selecting an item from the menu. The user chooses all the three answers (whether right or wrong). Then colors of the countries should be changed either to green or to red depending on the answer. Use CSS for changing color.

Write an HTML Page that can be used for registering the candidates for an entrance test. The fields are: name, age, qualifying examination (diploma or 10+2), stream in qualifying examination. If qualifying examination is "diploma", the stream can be "Electrical", "Mechanical" or "Civil". If the qualifying examination is 10+2, the stream can be "MPC" or "BPC". Validate the name to accept only characters and spaces.

Write an HTML page that has two selection menus. The first menu contains the states ("AP", "TN" and "KN") and depending on the selection the second menu should show the following items: "Hyderabad", "Vijayawada", "Kurnool" for AP, "Chennai", "Salem", "Madurai" for TN and "Bangalore", "Bellary", "Mysore" for KN.

Write an HTML page that has phone buttons 0 to 9 and a text box that shows the dialed number. If 00 is pressed at the beginning, it should be replaced with a + symbol in the text box. If the number is not a valid international number (+ followed by country code and 10 digit phone number) the color of the display should be red and it should turn to green when the number is valid. Consider only "+91, +1 and +44 as valid country codes. Use CSS for defining colors.

Write an HTML page that has a text box for phone number or Name. If a number is entered in the box the name should be displayed next to the number. If 00 is pressed at the beginning, it should be replaced with a + symbol in the text box. If a name is entered in the text box, it should show the number next to the name. If the corresponding value is not found, show it in red and show it in green otherwise. Use CSS for colors. Store at least 5 names and numbers in the script for testing.

A library consists of 10 titles and each title has a given number of books initially. A student can take or return a book by entering his/her HTNo as user ID and a given password. If there are at least two books, the book is issued and the balance is modified accordingly.

- (a) Use RDBMS and implement it with JSP.
- (b) Use XML File for data and Implement it with JSP
- (c) Use RDBMS and implement it with Servlets
- (d) Use XML File for data and Implement it with Servlets

A Bus Reservation System contains the details of a bus seat plan for 40 seats in 2x2 per row arrangement, where the seats are numbered from 1 to 40 from first row to last row. The customer can visit the website and can reserve a ticket of his choice if available by entering his details (Name, Address, Gender and Age). The customer can cancel the ticket by entering the seat number and his name as entered for reservation.

- (a) Use RDBMS and implement it with JSP.
- (b) Use XML File for data and Implement it with JSP
- (c) Use RDBMS and implement it with Servlets
- (d) Use XML File for data and Implement it with Servlets.

Implement a simple messaging system with the following details:

When a student logs in with his/her HTNO and a given password, they should get all the messages posted to him/her giving the ID of sender and the actual message. Each message may be separated with a ruler. There should be a provision for the user to send a message to any number of users by giving the IDs separated with commas in the "To" text box.

- (a) Use RDBMS and implement it with JSP.
- (b) Use XML File for data and Implement it with JSP
- (c) Use RDBMS and implement it with Servlets
- (d) Use XML File for data and Implement it with Servlets.

There is an image of 600×100 size which can be logically divided into 12 button areas with labels (0-9, +, =). Write a javascript calculator program that uses this image as input virtual keyboard and three text areas for two input numbers and result of sum of these numbers. Add a CSS that can be used to change the colors of text and background of text areas and the page. The input numbers can be up to 4 digits each.

Develop a web application that takes user name and password as input and compares them with those available in an xml user database. If they match, it should display the welcome page that contains the user's full

name and last used date and time retrieved from a client cookie. On logout it stores new time to the cookie and displays a goodbye page. If authentication fails, it should store the attempt number to the client cookie and displays an error page. Add necessary CSS that takes care of the font, color of foreground and background.

A web application has the following specifications:

The first page (Login page) should have a login screen where the user gives the login name and password. Both fields must be validated on client side for a minimum length of 4 characters, name should be lower case az characters only and password should contain at least one digit. On submitting these values, the server should validate them with a MySQL database and if failed, show the login page along with a message saying "Login Name or Password Mismatch" in Red color below the main heading and above the form. If successful, show a welcome page with the user's full name (taken from database) and and a link to Logout. On logout, a good bye page is displayed with the total time of usage (Logout time – login time). Specify the Schema details of table and web.xml file contents.

Implement it using (a) JSP Pages (b) Servlets (c) Struts

Design a struts based web portal for an international conference with following specifications:

The welcome page should give the details of the conference and a link to login. If login fails, direct them back for re-login and also provide a link for registration. On successful registration/login, the user will be directed to a page where s/he can see the status (accepted/rejected) of their already submitted papers followed by a form for submitting a doc file to the conference. Provide a logout button on all pages including the home page, once the user logs in. Implement validation framework to check that the user name is in the form of CCDDCC and password is in the form of (CCSDDD) (C for character, S for special character (one of @, #, \$, %, ^, & and !) and D for digit)., Database should be accessed through Connection Pool for MySql for user information. Provide scope for internationalization in future. Assume any missing information and mention it first.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M. TECH. I YEAR II SEMESTER

List of Open Electives Offered by Various Departments, Effective from AY 2017 - 18

| S. No | Name of the Department | Open Elective (S) Offered for Other
Departments |
|-------|--|--|
| 1 | Civil Engineering | 1. Finite Element Method |
| | (Open Elective – II) | Optimization Techniques |
| 2 | Electronics and Communication | 1. Industrial Instrumentation |
| | Engineering (Open Elective – II) | 2. Principles of Computer Communications
and Networks |
| 3 | Electrical and Electronics Engineering | 1. Energy From Waste |
| | (Open Elective – II) | Distributed Generation and Microgrid |
| | | Reliability Engineering |
| 4 | Mechanical Engineering | 1. Engineering Research Methodology |
| | (Open Elective – II) | |
| 5 | Computer Science and Engineering | 1. Machine Learning |
| | (Open Elective – II) | |

*Open Elective subject must be chosen from the list of open electives offered by OTHER departments.

Ex: A M.Tech ECE student cannot take Open Elective – II offered by ECE Dept, but can select from open electives offered by OTHER departments.

CIVIL ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

FINITE ELEMENT METHOD (Open Elective – II)

Course Objectives: To impart knowledge about various finite element techniques and development of finite element code.

Course Outcome: The learner will be able to solve continuum problems using finite element analysis.

UNIT - I

Introduction: Concepts of FEM - steps involved - merits and demerits - energy principles -

Discretization - Raleigh - Ritz method of functional approximation.

Principles of Elasticity: Stress equations - strain displacement relationships in matrix form plane stress, plane strain and axi-symmetric bodies of revolution with axi-symmetric loading.

UNIT - II

One dimensional FEM: Stiffness matrix for beam and bar elements - shape functions for 1-D elements. Two dimensional FEM: Different types of elements for plane stress and plane strain analysis displacement models - generalized coordinates - shape functions - convergent and compatibility requirements - geometric invariance - natural coordinate system - area and volume coordinates generation of element stiffness and nodal load matrices

UNIT - III

Isoparametric formulation:Concept - different isoparametric elements for 2D analysis -formulation of 4noded and 8-noded isoparametric quadrilateral elements - Lagrange elements - serendipity elements. Axi Symmetric Analysis:bodies of revolution - axi symmetric modeling - strain displacement relationship - formulation of axi symmetric elements.

Three dimensional FEM:Different 3-D elements-strain-displacement relationship –formulation of hexahedral and isoparametric solid element.

UNIT - IV

Introduction to Finite Element Analysis of Plates:Basic theory of plate bending - thin plate theory - stress resultants - Mindlin's approximations - formulation of 4-noded isoperimetric quadrilateral plate element – Shell Element.

UNIT - V

Introduction to non – linear finite analysis – basic methods – application to Special structures.

TEXT BOOKS:

- 1. A First Course in a Finite Element by Daryl L .Logan, CL Engineers.
- 2. Concepts and Applications of Finite Element Analysis by Robert D.Cook, DavidS. Malkus and Michael E. Plesha, John Wiley & Sons.

- 1. Introduction to Finite element Method by Tirupathi Chandra Patla and Belugunudu
- 2. Finite element Methods by OC Zienkiewicz
- 3. Finite element analysis, theory and progarmming by GS Krishna Murthy.
- 4. Introduction to Finite element Method by JN Reddy.

CIVIL ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

OPTIMIZATION TECHNIQUES (Open Elective – II)

Course Objectives: To understand the theory of optimization methods and algorithms developed for solving various types of optimization problems

Course Outcomes: The student will be able to understand the basic principles of optimization, and in a position to formulate optimization models for a wide range of civil engineering problems and able to solve them.

Unit-I

Linear Programming: Introduction and need for optimization in engineering design, formulating linear programs, graphical solution of linear programs, special cases of linear programming.

UNIT - II

The Simplex Method: Converting a problem to standard form, the theory of the simplex method, the simplex algorithm, special situations in the simplex algorithm, obtaining initial feasible solution.

UNIT - III

Duality and Sensitivity Analysis: Sensitivity analysis, shadow prices, dual of a normal linear program, duality theorems, dual simplex method. Integer Programming: Formulating integer programming problems, the branch-and-bound algorithm for pure integer programs, the branch-and-bound algorithm for mixed integer programs.

UNIT - IV

Non-linear Programming: Introduction to non-linear programming (NLP), Convex and concave functions, NLP with one variable, Line search algorithms, Multivariable unconstrained problems, constrained problems, Lagrange Multiplier, The Karush-Kuhn-Tucker (KKT) conditions, the method of steepest ascent, convex combination method, penalty function, Quadratic programming,

UNIT - V

Dynamic programming: Evolutionary algorithms: Genetic Algorithm, concepts of multiobjective optimization, Markov Process, Queuing Models.

TEXT BOOK:

1. S.S. Rao, Engineering Optimization: Theory and Practice, Wiley & Sons, New Jersey, 2009.

- 1. F.H. Hiller and G.J. Liberman, Introduction to Operations Research, Tata-McGraw-Hill, 2010.
- W.L. Winston, Operations Research: Applications and Algorithm, 4th Edition, Cengage Learning, 1994.
- 3. K.Deb, Optimization for Engineering Design, Prentice Hall, 2013.
- 4. M.C. Joshi and K.M. Moudgalay, Optimization: Theory and Practice, Narosa, 2004.
- 5. K. Deb, Multi-Objective Optimization using evolutionary algorithms, John Wiley and Sons, 2009.

ELECTRONICS AND COMMUNICATION ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

INDUSTRIAL INSTRUMENTATION (Open Elective – II)

UNIT - I

METROLOGY, VELOCITY AND ACCELERATION MEASUREMENT: Measurement of length -Gauge blocks – Plainness – Area using Simpson's rule, Plain meter – Diameter – Roughness – Angle using Bevel protractor, sine bars and Clinometer – Mechanical, Electrical, Optical and Pneumatic Comparators. Optical Methods for length and distance measurements using Optical flats and Michelson Interferometer.

Relative velocity – Translational and Rotational velocity measurements – Revolution counters and Timers - Magnetic and Photoelectric pulse counting stroboscopic methods. Accelerometers-different types, Gyroscopes-applications.

UNIT - II

FORCE AND PRESSURE MEASUREMENT: Force measurement – Different methods –Gyroscopic Force Measurement – Vibrating wire Force transducer. Basics of Pressure measurement –Manometer types – Force-Balance and Vibrating Cylinder Transducers – High and Low Pressure measurement – McLeod Gauge, Knudsen Gauge, Momentum Transfer Gauge, Thermal Conductivity Gauge, Ionization Gauge, Dual Gauge Techniques, Deadweight Gauges, Hydrostatic Pressure Measurement

UNIT - III

FLOW MEASUREMENT AND LEVEL MEASUREMENT: Flow Meters- Head type, Area type (Rota meter), electromagnetic type, Positive displacement type, mass flow meter, ultrasonic type, vertex shedding type, Hotwire anemometer type, Laser Doppler Velocity-meter. Basic Level measurements – Direct, Indirect, Pressure, Buoyancy, Weight, Capacitive Probe methods

UNIT - IV

DENSITY, VISCOSITY AND OTHER MEASUREMENTS: Density measurements – Strain Gauge load cell method – Buoyancy method - Air pressure balance method – Gamma ray method – Vibrating probe method. Units of Viscosity, specific gravity scales used in Petroleum Industries, Different Methods of measuring consistency and Viscosity –Two float viscorator –Industrial consistency meter. Sound-Level Meters, Microphones, Humidity Measurement

UNIT - V

CALIBRATION AND INTERFACING: Calibration using Master Sensors, Interfacing of Force, Pressure, Velocity, Acceleration, Flow, Density and Viscosity Sensors, Variable Frequency Drive

TEXT BOOKS:

- 1. Doeblin E.O., "Measurement Systems Applications and Design", 4th Edition, McGraw Hill International, 1990.
- 2. Patranabis D, "Principles of Industrial Instrumentation", TMH. End edition 1997

- 1. Considine D. M., "Process Instruments and Control Handbook", 4th Edition, McGraw Hill International, 1993
- 2. Jain R.K., "Mechanical and Industrial Measurements", Khanna Publications.

ELECTRONICS AND COMMUNICATION ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

PRINCIPLES OF COMPUTER COMMUNICATIONS AND NETWORKS (Open Elective – II)

Prerequisite: Nil

Course Objectives:

- To understand the concept of computer communication.
- To learn about the networking concept, layered protocols.
- To understand various communications concepts.
- To get the knowledge of various networking equipment.

Course Outcomes: The student:

- Can get the knowledge of networking of computers, data transmission between computers.
- Will have the exposure about the various communication concepts.
- Will get awareness about the structure and equipment of computer network structures.

UNIT - I

Overview of Computer Communications and Networking: Introduction to Computer Communications and Networking, Introduction to Computer Network, Types of Computer Networks, Network Addressing, Routing, Reliability, Interoperability and Security, Network Standards, The Telephone System and Data Communications.

UNIT - II

Essential Terms and Concepts: Computer Applications and application protocols, Computer Communications and Networking models, Communication Service Methods and data transmission modes, analog and Digital Communications, Speed and capacity of a Communication Channel, Multiplexing and switching, Network architecture and the OSI reference model.

UNIT - III

Analog and Digital Communication Concepts: Representing data as analog signals, representing data as digital signals, data rate and bandwidth reduction, Digital Carrier Systems.

UNIT - IV

Physical and data link layer Concepts: The Physical and Electrical Characteristics of wire, Copper media, fiber optic media, wireless Communications. Introduction to data link Layer, the logical link control and medium access control sub-layers.

UNIT - V

Network Hardware Components: Introduction to Connectors, Transreceivers and media convertors, repeaters, network interference cards and PC cards, bridges, switches, switches Vs Routers.

TEXT BOOKS:

1. Computer Communications and Networking Technologies, Michel A. Gallo and William H. Hancock, Thomson Brooks / Cole.

REFERENCE BOOKS:

1. Principles of Computer Networks and Communications, M. Barry Dumas, Morris Schwartz, Pearson.

ELECTRICAL AND ELECTRONICS ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

ENERGY FROM WASTE (Open Elective – II)

Prerequisite: Renewable Energy Sources, Physics, Environmental Studies

Course Objectives:

- To classify solid waste sources
- To identify methods of solid waste disposal
- To study various energy generation methods
- To analyse biogas production methods and recycling of e-waste

Course Outcomes: Upon the completion of the subject, the student will be able to

- Understand technologies for generation of energy from solid waste
- Compare methods of solid waste disposal
- Identify sources of energy from bio-chemical conversion
- Analyze methods for management of e-waste

UNIT- I

Solid Waste Sources Solid Waste Sources, types, composition, Properties, Global warming, Municipal Solid Waste: Physical, chemical and biological properties, Waste Collection and, Transfer stations, Waste minimization and recycling of municipal waste, Segregation of waste, Size Reduction, Managing Waste. Status of technologies for generation of Energy from Waste Treatment and Disposal Aerobic composting, incineration, Furnace type and design, Medical waste /Pharmaceutical waste treatment Technologies, incineration, Environmental impacts, Measures to mitigate environmental effects due to incineration.

UNIT - II

Land Fill method of Solid waste disposal Land fill classification, Types, methods and Sitting consideration, Layout and preliminary design of landfills: Composition, characteristics, generation, Movement and control of landfill leach ate and gases, Environmental monitoring system for land fill gases.

UNIT - III

Energy Generation from Waste Bio-chemical Conversion: Sources of energy generation, anaerobic digestion of sewage and municipal wastes, direct combustion of MSW-refuse derived solid fuel, Industrial waste, agro residues, Anaerobic Digestion.

UNIT - IV

Biogas production, Land fill gas generation and utilization, Thermo-chemical conversion: Sources of energy generation, Gasification of waste using Gasifiers, Briquetting, Utilization and advantages of briquetting, Environmental benefits of Bio-chemical and Thermo- chemical conversion.

UNIT - V

E-waste: e-waste in the global context – Growth of Electrical and Electronics Industry in India – Environmental concerns and health hazards – Recycling e-waste: a thriving economy of the unorganized sector – Global trade in hazardous waste – impact of hazardous e-waste in India. Management of e-waste: e-waste legislation, Government regulations on e-waste management – International experience – need for stringent health safeguards and environmental protection laws of India.

TEXT BOOKS:

- 1. Nicholas P. Cheremisinoff. Handbook of Solid Waste Management and Waste Minimization Technologies. An Imprint of Elsevier, New Delhi (2003).
- P. Aarne Vesilind, William A. Worrell and Debra R. Reinhart. Solid Waste Engineering. Thomson Asia Pte Ltd. Singapore (2002)
- 3. M. Dutta , B. P. Parida, B. K. Guha and T. R. Surkrishnan. Industrial Solid Waste Management and Landfilling practice. Narosa Publishing House, New Delhi (1999).

- 4. "E-waste in India: Research unit, Rajya Sabha Secretariat, New Delhi, June 2011"
- 5. Amalendu Bagchi. Design, construction and Monitoring of Landfills. John Wiley and Sons. New York. (1994)
- 6. M. L. Davis and D. A. Cornwell. Introduction to environmental engineering. Mc Graw Hill International Edition, Singapore (2008)
- 7. C. S. Rao. Environmental Pollution Control Engineering. Wiley Eastern Ltd. New Delhi (1995)
- 8. S. K. Agarwal. Industrial Environment Assessment and Strategy. APH Publishing Corporation. New Delhi (!996)
- 9. Sofer, Samir S. (ed.), Zaborsky, R. (ed.), "Biomass Conversion Processes for Energy and Fuels", New York, Plenum Press, 1981
- 10. Hagerty, D.Joseph; Pavoni, Joseph L; Heer, John E., "Solid Waste Management", New York, Van Nostrand, 1973
- 11. George Tchobanoglous, Hilary Theisen and Samuel Vigil Prsl: Tchobanoglous, George Theisen, Hillary Vigil, Samuel, "Integrated Solid Waste management: Engineering Principles and Management issues", New York, McGraw Hill, 1993.

REFERENCES:

- 1. C Parker and T Roberts (Ed), Energy from Waste An Evaluation of Conversion Technologies, Elsevier Applied Science, London, 1985
- KL Shah, Basics of Solid and Hazardous Waste Management Technology, Prentice Hall, 2000 3. M Datta, Waste Disposal in Engineered Landfills, Narosa Publishing House, 1997
- 3. G Rich et.al, Hazardous Waste Management Technology, Podvan Publishers, 1987
- 4. AD Bhide, BB Sundaresan, Solid Waste Management in Developing Countries, INSDOC, New Delhi,1983 FUEL CELL AND

5. Google books:

- (i) e-waste Management: From waste to Resource Klaus Hieronymi, Ramzy Kahnat, Eric williams
 - Tech. & Engg.-2013(Publisher: Earthscan 2013).
- (ii) What is the impact of E-waste: Tamara Thompson
- (iii) E-waste poses a Health Hazard: Sairudeen Pattazhy

6. Weblinks :

www.unep.org www.routledge.com www.amazon.com www.bookdepository.com www.ecoactiv.com

ELECTRICAL AND ELECTRONICS ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

DISTRIBUTED GENERATION AND MICROGRID (Open Elective - II)

Course Objectives

- To illustrate the concept of distributed generation
- To analyze the impact of grid integration.
- To study concept of Micro grid and its configuration
- To find optimal size, placement and control aspects of DGs

Course Outcomes: Upon the Completion of the course student will be able to

- Find the size and optimal placement DG
- Analyze the impact of grid integration and control aspects of DGs
- Model and analyze a micro grid taking into consideration the planning and operational issues of the DGs to be connected in the system
- Describe the technical impacts of DGs in power systems

UNIT - I

Need for distributed generation - Renewable sources in distributed generation - Current scenario in distributed generation - Planning of DGs – Siting and sizing of DGs – Optimal placement of DG sources in distribution systems.

UNIT - II

Grid integration of DGs – Different types of interfaces - Inverter based DGs and rotating machine based interfaces - Aggregation of multiple DG units - Energy storage elements - Batteries, ultra-capacitors, flywheels.

UNIT - III

Technical impacts of DGs – Transmission systems, Distribution systems, De-regulation – Impact of DGs upon protective relaying – Impact of DGs upon transient and dynamic stability of existing distribution systems.

UNIT-IV

Economic and control aspects of DGs – Market facts, issues and challenges - Limitations of DGs - Voltage control techniques, Reactive power control, Harmonics, Power quality issues - Reliability of DG based systems – Steady state and Dynamic analysis.

UNIT - V

Introduction to micro-grids – Types of micro-grids – Autonomous and non-autonomous grids – Sizing of micro-grids - Modeling & analysis - Micro-grids with multiple DGs – Micro-grids with power electronic interfacing units - Transients in micro-grids - Protection of micro-grids – Case studies.

TEXT BOOKS:

- 1. H. Lee Willis, Walter G. Scott, 'Distributed Power Generation Planning and Evaluation', Marcel Decker Press, 2000.
- 2. M.Godoy Simoes, Felix A.Farret, 'Renewable Energy Systems Design and Analysis with Induction Generators', CRC press.
- 3. Robert Lasseter, Paolo Piagi, ' Micro-grid: A Conceptual Solution', PESC 2004, June 2004.
- 4. F. Katiraei, M.R. Iravani, 'Transients of a Micro-Grid System with Multiple Distributed Energy Resources', International Conference on Power Systems Transients (IPST'05) in Montreal, Canada on June 19-23, 2005.
- 5. Z. Ye, R. Walling, N. Miller, P. Du, K. Nelson, 'Facility Microgrids', General Electric Global Research Center, Niskayuna, New York, Subcontract report, May 2005.

ELECTRICAL AND ELECTRONICS ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

RELIABILITY ENGINEERING (Open Elective – II)

Course Objectives:

- To comprehend the concept of Reliability and Unreliability
- Derive the expressions for probability of failure, Expected value and standard deviation of Binominal distribution, Poisson distribution, normal distribution and weibull distributions.
- Formulating expressions for Reliability analysis of series-parallel and Non-series parallel systems
- Deriving expressions for Time dependent and Limiting State Probabilities using Markov models.

Course Outcomes: Upon the completion of this course, the student will be able to

- Apply fundamental knowledge of Reliability to modeling and analysis of seriesparallel and Non-series parallel systems.
- Solve some practical problems related with Generation, Transmission and Utilization of Electrical Energy.
- Understand or become aware of various failures, causes of failures and remedies for failures in practical systems.

UNIT – I

Rules for combining probabilities of events, Definition of Reliability. Significance of the terms appearing in the definition. Probability distributions: Random variables, probability density and distribution functions. Mathematical expectation, Binominal distribution, Poisson distribution, normal distribution, weibull distribution.

UNIT - II

Hazard rate, derivation of the reliability function in terms of the hazard rate. Failures: Causes of failures, types of failures (early failures, chance failures and wear-out failures). Bath tub curve. Preventive and corrective maintenance. Modes of failure. Measures of reliability: mean time to failure and mean time between failures.

UNIT - III

Classification of engineering systems: series, parallel and series-parallel systems- Expressions for the reliability of the basic configurations.

Reliability evaluation of Non-series-parallel configurations: Decomposition, Path based and cutest based methods, Deduction of the Paths and cutsets from Event tree.

UNIT - IV

Discrete Markov Chains: General modeling concepts, stochastic transitional probability matrix, time dependent probability evaluation and limiting state probability evaluation of one component repairable model. Absorbing states.

Continuous Markov Processes: Modeling concepts, State space diagrams, Stochastic Transitional Probability Matrix, Evaluating time dependent and limiting state Probabilities of one component repairable model. Evaluation of Limiting state probabilities of two component repairable model.

UNIT - V

Approximate system Reliability analysis of Series systems, parallel systems with two and more than two components, Network reduction techniques. Minimal cutest/failure mode approach.

TEXT BOOKS:

- 1. "Reliability evaluation of Engineering systems", Roy Billinton and Ronald N Allan, BS Publications.
- 2. "Reliability Engineering", Elsayed A. Elsayed, Prentice Hall Publications.

- "Reliability Engineering: Theory and Practice", By Alessandro Birolini, Springer Publications.
 "An Introduction to Reliability and Maintainability Engineering", Charles Ebeling, TMH Publications.
 "Reliability Engineering", E. Balaguruswamy, TMH Publications.

MECHANICAL ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

ENGINEERING RESEARCH METHODOLOGY (Open Elective – II)

UNIT - I

Research Methodology: Objectives and Motivation of Research, Types of Research, Research Approaches, Significance of Research, Research Methods verses Methodology, Research and Scientific Method, Important of Research Methodology, Research Process, Criteria of Good Research, Problems Encountered by Researchers in India, Benefits to the society in general.

Defining the Research Problem: Definition of Research Problem, Problem Formulation, Necessity of Defining the Problem, Technique involved in Defining a Problem.

UNIT - II

Literature Survey: Importance of Literature Survey, Sources of Information, Assessment of Quality of Journals and Articles, Information through Internet. **Literature Review**: Need of Review, Guidelines for Review, Record of Research Review.

UNIT - III

Research Design: Meaning of Research Design, Need of Research Design, Feature of a Good Design Important Concepts Related to Research Design, Different Research Designs, Basic Principles of Experimental Design, Developing a Research Plan, Design of Experimental Set-up, Use of Standards and Codes.

UNIT - IV

Data Collection: Collection of primary data, Secondary data, Data organization, Methods of data grouping, Diagrammatic representation of data, Graphic representation of data. Sample Design, Need for sampling, some important sampling definitions, Estimation of population, Role of Statistics for Data Analysis, Parametric V/s Non Parametric methods, Descriptive Statistics, Measures of central tendency and Dispersion, Hypothesis testing, Use of Statistical software.

Data Analysis: Deterministic and random data, Uncertainty analysis, Tests for significance: Chisquare, student's t-test, Regression modeling, Direct and Interaction effects, ANOVA, F-test, Time Series analysis, Autocorrelation and Autoregressive modeling.

UNIT - V

Research Report Writing: Format of the Research report, Synopsis, Dissertation, Thesis its Differentiation, References/Bibliography/Webliography, Technical paper writing/Journal report writing, making presentation, Use of visual aids. **Research Proposal Preparation**: Writing a Research Proposal and Research Report, Writing Research Grant Proposal.

- 1. C.R Kothari, Research Methodology, Methods & Technique; New Age International Publishers, 2004
- 2. R. Ganesan, Research Methodology for Engineers, MJP Publishers, 2011
- 3. Ratan Khananabis and Suvasis Saha, Research Methodology, Universities Press, Hyderabad, 2015.
- 4. Y. P. Agarwal, Statistical Methods: Concepts, Application and Computation, Sterling Publs., Pvt., Ltd., New Delhi, 2004
- 5. Vijay Upagade and Aravind Shende, Research Methodology, S. Chand & Company Ltd., New Delhi, 2009
- 6. G. Nageswara Rao, Research Methodology and Quantitative methods, BS Publications, Hyderabad, 2012.
- 7. Naval Bajjai "Business Research Methods" Pearson 2011.
- 8. Prahalad Mishra " Business Research Methods " Oxford 2016

COMPUTER SCIENCE AND ENGINEERING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

MACHINE LEARNING (Open Elective - II)

Prerequisites:

- Data Structures
- Knowledge on statistical methods

Course Objectives:

- This course explains machine learning techniques such as decision tree learning, Bayesian learning etc.
- To understand computational learning theory.
- To study the pattern comparison techniques.

Course Outcomes:

- Understand the concepts of computational intelligence like machine learning
- Ability to get the skill to apply machine learning techniques to address the real time problems in different areas
- Understand the Neural Networks and its usage in machine learning application.

UNIT - I

Introduction - Well-posed learning problems, designing a learning system Perspectives and issues in machine learning

Concept learning and the general to specific ordering – Introduction, A concept learning task, concept learning as search, Find-S: Finding a Maximally Specific Hypothesis, Version Spaces and the Candidate Elimination algorithm, Remarks on Version Spaces and Candidate Elimination, Inductive Bias.

Decision Tree Learning – Introduction, Decision Tree Representation, Appropriate Problems for Decision Tree Learning, The Basic Decision Tree Learning Algorithm Hypothesis Space Search in Decision Tree Learning, Inductive Bias in Decision Tree Learning, Issues in Decision Tree Learning.

UNIT - II

Artificial Neural Networks Introduction, Neural Network Representation, Appropriate Problems for Neural Network Learning, Perceptions, Multilayer Networks and the Back propagation Algorithm. Discussion on the Back Propagation Algorithm, An illustrative Example: Face Recognition

Evaluation Hypotheses – Motivation, Estimation Hypothesis Accuracy, Basics of Sampling Theory, A General Approach for Deriving Confidence Intervals, Difference in Error of Two Hypotheses, Comparing Learning Algorithms.

UNIT - III

Bayesian learning - Introduction, Bayes Theorem, Bayes Theorem and Concept Learning Maximum Likelihood and Least Squared Error Hypotheses, Maximum Likelihood Hypotheses for Predicting Probabilities, Minimum Description Length Principle, Bayes Optimal Classifier, Gibs Algorithm, Naïve Bayes Classifier, An Example: Learning to Classify Text, Bayesian Belief Networks, EM Algorithm.

Computational Learning Theory – Introduction, Probably Learning an Approximately Correct Hypothesis, Sample Complexity for Finite Hypothesis Space, Sample Complexity for Infinite Hypothesis Spaces, The Mistake Bound Model of Learning.

Instance-Based Learning – Introduction, k-Nearest Neighbor Learning, Locally Weighted Regression, Radial Basis Functions, Case-Based Reasoning, Remarks on Lazy and Eager Learning.

UNIT - IV

Pattern Comparison Techniques, Temporal patterns, Dynamic Time Warping Methods, Clustering, Codebook Generation, Vector Quantization

Pattern Classification: Introduction to HMMS, Training and Testing of Discrete Hidden Markov Models and Continuous Hidden Markov Models, Viterbi Algorithm, Different Case Studies in Speech recognition and Image Processing

UNIT - V

Analytical Learning – Introduction, Learning with Perfect Domain Theories : PROLOG-EBG Remarks on Explanation-Based Learning, Explanation-Based Learning of Search Control Knowledge, Using Prior Knowledge to Alter the Search Objective, Using Prior Knowledge to Augment Search Operations.

Combining Inductive and Analytical Learning – Motivation, Inductive-Analytical Approaches to Learning, Using Prior Knowledge to Initialize the Hypothesis.

TEXT BOOKS:

- 1. Machine Learning Tom M. Mitchell,- MGH
- 2. Fundamentals of Speech Recognition By Lawrence Rabiner and Biing Hwang Juang.

REFERENCE BOOK:

1. Machine Learning : An Algorithmic Perspective, Stephen Marsland, Taylor & Francis