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1. DIGITAL SIGNAL PROCESSING

> A signal is defined as any physical quantity that varies with time, space or

another independent variable.

> A system is defined as a physical device that performs an operation on a
signal.

» System is characterized by the type of operation that performs on the signal.
Such operations are referred to as signal processing.

1.1 Advantages of DSP

1. Adigital programmable system allows flexibility in reconfiguring the digital
signal processing operations by changing the program. In analog redesign of
hardware is required.

2. In digital accuracy depends on word length, floating Vs fixed point
arithmetic etc. In analog depends on components.

3. Can be stored on disk.

4. It is very difficult to perform precise mathematical operations on signals in
analog form but these operations can be routinely implemented on a digital
computer using software.

5. Cheaper to implement.

6. Small size.

7. Several filters need several boards in analog, whereas in digital same DSP
processor is used for many filters.

1.2 Disadvantages of DSP

1. When analog signal is changing very fast, it is difficult to convert digital
form .(beyond 100KHz range)

2. w=1/2 Sampling rate.

3. Finite word length problems.

4. When the signal is weak, within a few tenths of millivolts, we cannot

amplify the signal after it is digitized.



5. DSP hardware is more expensive than general purpose microprocessors &
micro controllers.

6. Dedicated DSP can do better than general purpose DSP.

1.3 Applications of DSP

1. Filtering.

2. Speech synthesis in which white noise (all frequency components present to
the same level) is filtered on a selective frequency basis in order to get an audio
signal.

3. Speech compression and expansion for use in radio voice communication.

4. Speech recognition.

5. Signal analysis.

6. Image processing: filtering, edge effects, enhancement.

7. PCM used in telephone communication.

8. High speed MODEM data communication using pulse modulation systems
such as FSK, QAM etc. MODEM transmits high speed (1200-19200 bits per
second) over a band limited (3-4 KHz) analog telephone wire line.

9. Wave form generation.

1.4 Classification of Signals

I. Based on Variables:

1. f(t)=5t : single variable

2. f(x,y)=2x+3y : two variables

3. S;= A Sin(wt) : real valued signal

4, S, = AeM : A Cos(wt)+j A Sin(wt) : Complex valued signal
S1(t)

5. Sa(t)=| s2(t) | : Multichannel signal
S3(t)

Ex: due to earth quake, ground acceleration recorder

Ir(x,vy,t)
6. [(X,y,1)=] lg(x, y,t) | multidimensional

Ib(x,y,t)



II. Based on Representation:
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I11. Based on duration.

right sided: x(n)=0 for n<N
left sided :x(n)=0 for n>N
causal : x(n)=0 for n<0

Anti causal : x(n)=0 for n>0

o~ 0 DN PF

Non causal : x(n)=0 for |n>N

IVV. Based on the Shape.

1. 5 (n)=0 n=0
=1 n=0
X (n) =75 ()
11
—O0—=O O O O >

Unit Sample or Discrete time sample

2. u(n)=1 n>0
=0 n<0

Amnalog Signal

Sampled Signal

Quantized Signal

Digital Signal



Arbitrary sequence can be represented as a sum of scaled, delayed impulses.
P (n) = a3s(n+3) +a; ¢ (u-1) +az 5 (u-2) +a; 6 (u-7)
Or

0

x(n) = Y x(K)5(n-k)

k=—00

u(n) = Zn: s(k) =s5()+ s(n-1)+ 5(n-2).....

=3 5(n-k)

3.Discrete pulse signals.
Rect (n/2N) =1 Inf <N
=0 else where.
5.Tri (n/N) = 1-|n[/N |n[<N
=0 else where.

1. Sinc (n/N)= Sa(n1/N) = Sin(n[1/N) / (n[1/N), Sinc(0)=1

Sinc (n/N) =0 atn=kN, k=+1, +2...

Sinc (n) = 5(n) for N=1; (Sin(n[1)/n[1=1= 5 (n))

6.Exponential Sequence

x(nN)=A "

If A & o are real numbers, then the sequence is real. If 0<a <1 and A is +ve,
then sequence values are +ve and decreases with increasing n.

For -1<a<0, the sequence values alternate in sign but again decreases in

magnitude with increasing n. If |o|>1, then the sequences grows in magnitude as n

Increases.
7.Sinusoidal Sequence

x(n) = A Cos(won+¢) foralln



8.Complex exponential sequence
If @ =|afeM®
A= | e
x(n) = |Al ei¥ o elvon
= |A |o|" Cos(Won+ ¢ ) + j |Al|e]" Sin(won+¢)

If «>1, the sequence oscillates with exponentially growing envelope.

If « <1, the sequence oscillates with exponentially decreasing envelope.

So when discussing complex exponential signals of the form x(n)= A e/ or
real sinusoidal signals of the form x(n)= A Cos(won+¢) , we need only consider
frequencies in a frequency internal of length 21T such as T1< Wo < [T or 0<
Wo<21T.

V. Deterministic (x (t) = o' X (t) = A Sin(wt))

& Non-deterministic Signals. (Ex: Thermal noise.)

V1. Periodic & non periodic based on repetition.
VII. Power & Energy Signals

Energy signal: E = finite, P=0

¢ Signal with finite energy is called energy signal.

e Energy signal have zero signal power, since averaging finite energy over
infinite time. All time limited signals of finite amplitude are energy signals.

Ex: one sided or two sided decaying. Damped exponentials, damped sinusoidal.

e X(t) is an energy signal if it is finite valued and x? (t) decays to zero fasten

than last 500,

i



Power signal: E =, P20, P# Ex: All periodic waveforms

Neither energy nor power: E=w, P=0 Ex:1/+t t>1 E=w, P=w, Ex:t"

VIIl. Based on Symmetry
1. Even X(n)=Xe(N)+Xo(N)
2. Odd X(-n)=Xe(-N)+Xo(-n)
3. Hidden X(-n)=Xe(N)-Xo(N)
4, Half-wave symmetry. Xe(N)= %[x(n)+x(—n)]

Xo(M)= — X()-X(-1)]

Signal Classification by duration & Area.

a. Finite duration: time limited.

&~

i N

P
L

b. Semi-infinite extent: right sided, if they are zero for t <o where « = finite

&

/

4

Y

c. Left sided: zero fort >«

r

Piecewise continuous: possess different expressions over different intervals.
Continuous: defined by single expressions for all time. x(t) = sin(t)

Periodic: X, (t) = X, (t £nT)

)
For periodic signals P = %I|x(t)|2 dt
0



Xrms=Jp

For non periodic
P =Lt i}|x(t)|2 dt
Toy,

To
Xavg = Lt j x(t)dt

0
x(t) = Acos(2[1fot+¢) P=0.5A?
x(t) = Ae Fi2llfot+d)  p=p2

b b b
—_ 2 _1 2 _1 2
E=AD E_EAb E—gAb
Q.
2
x it
E=24
0 6
| e-@tgt= =
0 a
¥@ |z E=4 7T
1 4
Xy |5
E=16 T
1 4
X (1) +¥ (D) i
5 i E=40 J
1 a2 6

10



x ()

yalia

Ti2 T

Ex = %AZ 0.5T + % (-A)?0.5T=05A2T

Px=0.5 A2
Q.

¥ (1)

Ey = [%AZ 0.5T] 2= % AZT
Py = % A2
e Xx(t)=AeM is periodic
17 2 2
Px = ?£|x(t)| dt=A

e X(2t -6 ): compressed by 2 and shifted right by 3 OR shifted by 6 and
compressed by 2.

e X(1-t): fold x(t) & shift right by 1 OR shift right and fold.

e X(0.5t +0.5) Advance by 0.5 & stretched by 2 OR stretched by 2 & advance
by 1.

11



yO=2x[ 212270 +2] 2X(at+p) i 5arp=-li-atprl > a

=-1/3: p =2/3

Area of symmetric signals over symmetric limits (-« , «)

Odd symmetry: T Xp (t) dt =0

Even symmetry: :‘f Xe (t) dt =2 T Xe (t) dt
-a 0

Xe (t) +Ye (t): even symmetry.
Xe () Ye (t): even symmetry.
Xo (t) +Yo (t): odd symmetry.
Xo (t) Xo (t): even symmetry.
Xe (t) +Yo (t): no symmetry.
Xe (t) Yo (t): odd symmetry.

Xe(m)= - [X(N)+x(-0)]
X0 (n) = ~[x (n)-x (-n)]

e Area of half-wave symmetry signal always zero.

e Half wave symmetry applicable only for periodic signal.
e Fy=GCD (f,f)

T=LCM (T1, T2)

o Y() = xu(f) + xa(t)

Py= Px1+Px2

Y(t)rms =./Py

12



e U(0) =0.51s called as Heaviside unit step.

e X(t) =Sin(t) Sin(ITt)

=0.5cos (1-TT)t—0.5cos (1+I1)t

Wy=1-T1

W,=1+]T almost periodic OR non periodic.
P, = 0.5[0.52 +0.52] =0.25 W

B

AN/ N

Area of any sinc or Sinc 2equals area of triangle ABC inscribed within the main

lobe.
Even though the sinc function is square integrable ( an energy signal) , it is not

absolutely integrable( because it does not decay to zero faster than ﬁ)
s(t)=0 t=0
= o t=0 I5(T)d1’ =1

An impulse is a tall narrow spike with finite area and infinite energy.
The area of impulse A §(t) equals A and is called its strength. How ever its

hight at t=0 is «.

h(® b (t)

2 exp(-t)

-2 exp(-t)

13



=2 5(t) - 2et u(t)
2ets(t)=2 5(t)

1
slalt-pl1= [Hot-p)
[x® px () S D) XM

2
i |
B |

2 2
|, = j cos(2[Tt)5(2t +1)dt = j cos(21t)0.55(t +0.5)dt = 0.5 cos(2[]t) at t=-0.5 = -
-4 -4

L

M___
[
— ¥
—
-

0.5

0 0

X1(t) = x(t) D, s(t-kts) = D x(kts) & (t-kts)

k=—0 k=—0

x1(t) is not periodic.

The doublet
on
i (t) 1T i (t) 1T 1 % Area=1
— —
* | * | = {
T T T T
x 0 X 1o
i - v s 1
'T T >t _T J T > t L t
- 1/T2] -T2 ¥
5°(t) =0 t£0

14



= undefined t=0 T5'(t)dt=0 5 (-t) = -6 (t) then Odd
function.
1
slalt-pl1= [Hot-p)

Differentiating on both sides

5 [alt-p11= = 5t-p)
ale|

With ¢=-1

57 () =-6" (1)

%[x(t)c?(t —a)=X () S(t-a) + X ()5 (t-a)

=x"(a) 6(ta) + X (1)’ (t-a )= 1
Or
%[X(t)é‘(t—a)] = %[X(aﬁ(t—a)]: X(a)d’ (t-a) —--m-mmm- 2
1=2

X (a) 6(t-a)+x{M)s’ (t-a) =X(a)d’ (t-a)
=> XM (ta)=X(a)d’ t-a)-X" (a) §(t-a)

[ x®6" (ta)dt= [ x(a)s’ (a)dt- [ X () 5(t-a)dt

=0-x"(a)=-%X (a)

Higher derivatives of §(t) obey 5"(t) = (-1)" 5"(t) are alternately odd and
even, and possess zero area. All are eliminating forms of the same sequence
that generate impulses, provided their ordinary derivatives exits. None are
absolutely integrable. The impulse is unique in being the only absolutely
integrable function from among all its derivatives and integrals (step, ramp etc)
What does the signal x(t) = e ¢ °(t) describe?

XO)=6" W) - (1) s®)=5" )+ 5(t)

| = j[(t —3)5(2t + 2)] +8cos([Tt)5" (t — 0.5)]dt

15



=05 (t-3)ft=—-1 -8 %[cosl’[t]ﬁ 05

= 23.1327 Answer.
1.5 Operation on Signals:
1. Shifting.
x(n) — shift right or delay = x(n-m)
x(n) — shift left or advance = x(n+m)
2. Time reversal or fold.
X(-n+2) is x(-n) delayed by two samples.
X(-n-2) is x(-n) advanced by two samples.
Or
x(n) is right shift x(n-2), then fold x(-n-2)
x(n) fold x(-n) shift left x(-(n+2)) = x(-n-2)
EX:
x(n)=2,3,4,56,7.

Find 1.y(n)=x(n-3) 2. x(n+2) 3. x(-n) 4. x(-n+1) 5. x(-n-2)

1. y(n)= x(n-3) = { 0 ,2,3,4,5,6,7} shift x(n) right 3 units.
2. x(n+2) ={ 2,3,4,5,(? , 7} shift x(n) left 2 units.

3. x(-n) ={ 7,6,5,? ,3,2} fold x(n) about n=0.

4, x(-n+1) ={ 7,6,?,4,3,2} fold x(n), delay by 1.

5. x(-n-2) = { 7,6,5,4,3,2} fold x(n), advanced by 2.

3. a. Decimation.

Suppose x(n) corresponds to an analog signal x(t) sampled at intervals Ts. The
signal y(n) = x(2n) then corresponds to the compressed signal x(2t) sampled at Ts
and contains only alternate samples of x(n)( corresponding to x(0), x(2), x(4)...).

We can also obtain directly from x(t) (not in compressed version). If we sample it

at intervals 2Ts (or at a sampling rate Fs = %TS ). This means a two fold reduction

16



in the sampling rate. Decimation by a factor N is equivalent to sampling x(t) at
intervals NTs and implies an N-fold reduction in the sampling rate.

b. Interpolation.

y(n) = x(n/2) corresponds to x(t) sampled at Ts/2 and has twice the length of
x(n) with one new sample between adjacent samples of x(n).

The new sample value as ‘0’ for Zero interpolation.

The new sample constant = previous value for step interpolation.

The new sample average of adjacent samples for linear interpolation.

Interpolation by a factor of N is equivalent to sampling x(t) at intervals Ts/N

and implies an N-fold increase in both the sampling rate and the signal length.

EX: Decimation Step interpolation
{1,26,4,884 —>{1,6,8% —> {1,1,6,6,8 8}
n—>2n n—»n/2
Step interpolation Decimation

{1,2,6,4,88 —>{1,1,226,64488 —> {1,2,64,8}
n—>n/2 n—»2n

Since Decimation is indeed the inverse of interpolation, but the converse is not
necessarily true. First Interpolation & Decimation.
Ex:  x(n)={ 11, 2,5, -1}

x(n/3) ={1,0,0, 2 2,0,0,5,0,0,-1,0,0} Zero interpolation.
={11]1, ;,2,2,5,5,5,-1,-1,-1} Step interpolation.

2 1

= 1,5, , 2,3,45,3,1,-1, -— ,-=} Linear interpolation.
3 T 3 3

w| ol

4. Fractional Delays.
It requires interpolation (N), shift (M) and Decimation (n): x (n -%) =X (

(Nn-M)
- )

2n-1
2

)

x(n) = {2, 4, 6, 8}, find y(n)=x(n-0.5) = x (

17



g(n) =x(n2) ={2, 2, 4, 4, 6, 6, 8,8} for step interpolation.
h(n) =g(n-1) = x(") = {2,2,4, 4,6, 6,38}

2n-1

y(n) = h(2n) = x(n-0.5) = x(="

)=1{2, 4,6,8}

OR
g(n) =x(n/2) = {2,3,4,5, 6 ,7,8,4} linear interpolation.

h(n) =g(n-1) = {2,3,4,?, 6, 7,8,4}

g (n) = h(2n)={3,5,7,4}
1.6 Classification of Systems
1. a. Static systems or memory less system. (Non Linear / Stable)
Ex. y(n) =ax(n)
=n x(n) + b x3(n)
=[x(M]* =a(n-1) x(n)
y(n) = 7 [x(n), n]
If its o/p at every value of ‘n” depends only on the input x(n) at the same value
of ‘n’
Do not include delay elements. Similarly to combinational circuits.
b. Dynamic systems or memory.
If its o/p at every value of ‘n” depends on the o/p till (n-1) and i/p at the same
value of ‘n’ or previous value of ‘n’.
Ex. y(n) = x(n) + 3 x(n-1)
=2 X(n) - 10 x(n-2) + 15 y(n-1)
Similar to sequential circuit.
2. ldeal delay system. (Stable, linear, memory less if nd=0)
Ex.y (n) = x(n-nd)

nd is fixed = +ve integer.

18



3. Moving average system. (LTIV ,Stable)

m2

y(n) =1/ (my+ma+1) > x(n—k)

k=—m1
This system computes the n'" sample of the o/p sequence as the average of

(my+my+1) samples of input sequence around the n™ sample.

X(K)

[ 7111 o 1T

L g l

If M1=0: M2=5
y(7) =16 [ 3 x7-K)]

= 1/6 [x(7) + x(6) + x(5) + x(4) + x(3) + x(2)]
y(8) = 1/6 [x(8) + x(7) + x(6) + x(5) + x(4) + x(3)]
So to compute y (8), both dotted lines would move one sample to right.

4. Accumulator. ( Linear , Unstable)

n

y(n) = > x(k)

k=-o0

n-1

= Y x(k) + x(n)

ot
=y(n-1) + x(n)
x(n)=1{...0,3,2,1,0,1,2,3,0,....}
y(n)={...0,3,5,6,6,7,9,12,12...}
O/p at the n'" sample depends on the i/p’s till n'" sample
Ex:
x(n) = nu(n); given y(-1)=0. i.e. initially relaxed.

19



-1

Y = 3 X0+ Y x(K)

k=—-o0

n

=YD+ Yxk) =0+ Yo =MD

5. Linear Systems.

If yi(n) & y2(n) are the responses of a system when Xx;(n) & Xz(n) are the
respective inputs, then the system is linear if and only if

[ xI(n)+ x2(n)] = z[xL(n)] + z[x2(n)]

= yi(n) + y2(n) (Additive property)

r[ax(n)] =a z[x(n)] =ay(n) (Scaling or Homogeneity)

The two properties can be combined into principle of superposition stated as

rfaxi(n}+bx2(n)] = a z[x1(n)] + b 7[x2(n)]

Otherwise non linear system.

6. Time invariant system.

Is one for which a time shift or delay of input sequence causes a corresponding
shift in the o/p sequence.

y(n-K) = z[x(n—k)] TIV

# TV

7. Causality.
A system is causal if for every choice of n, the o/p sequence value at index n=

no depends only on the input sequence values for n< n,
y(n) = x(n) + x(n-1) causal.
y(n) = x(n) + x(n+2) + x(n-4) non causal.
8. Stability.
For every bounded input |x(n)| < Bx < « for all n, there exists a fixed +ve finite

value By such that |y(n)| < By <.
1.7 PROPERTIES OF LTI SYSTEM.

o0

1. x(n) = D x(k)s(n—k)

k=—o0

20



y(n) = 7| ix(k)é(n —k)] for linear

i x(k) z [ (n-k)] for time invariant

k=—o0

S x(k)h(n —k) = x(n) » h(n)

k=—o0

Therefore o/p of any LTI system is convolution of i/p and impulse response.

V(o) = Y h(x(no k)

= _Zlh(k)x(no —k)+ ih(k)X(no —k)

= h(-1) X(Ng*1) + h(-2) X(Ng*2).......... +h(0) x(no) + h(L) X(ne-1) + ..

y(n) is causal sequence if h(n) =0 n<0
y(n) is anti causal sequence if h(n) =0 n>0

y(n) is non causal sequence if h(n) =0 |n|>N

Therefore causal system y(n) = i h(k)x(n—k)
k=0

If i/p is also causal y(n) = Zn:h(k)x(n - k)
k=0

2. Convolution operation is commutative.

x(n) = h(n) = h(n) = x(n)

3. Convolution operation is distributive over additive.
X(n) = [ha(n) + ha(n)] = x(n) = ha(n) + x(n) = ha(n)

4. Convolution property is associative.

X(n) = ha(n) = ha(n) = [x(n) « ha(n)] = ha(n)

x (n) v ()

hi(n) h2(n) —

w ()

5 y(n)=hy*w(n) = h2(n)*h1(n)*x(n) = h3(n)*x(n)

21



x () bALY

hi(n) * h2(n) —

hl(n)
¥ ()
< (n) ( >—.

T

h2(n)

h (n) = hi(n) + ha(n)
7 LTI systems are stable if and only if impulse response is absolutely

summable.

0

< Y |hK)| [x(n=K)|

k=—c0

o] = | X htox(n-k)

Since x (n) is bounded |x(n)| <bx<o

oy < Bx Y. |h(k)|

k=—c0

0

8= |h(k)| is necessary & sufficient condition for stability.

k=—o0
8 J(n) «x(n) = x(n)
9 Convolution yields the zero state response of an LTI system.
10 The response of LTI system to periodic signals is also periodic with

identical period.
y(n) = h (n) = x(n)

= S h(k)x(n—k)

y (+N) = S h(k)x(n—k+N)

22



put n-k =m

= Y h(n-m)x(m+ N)

= 3 h(n—m)x(m)

m=k
= Yh-kx() = y(n) (Ans)

Q. y (n)-0.4 y(n-1) =x (n). Find causal impulse response? h(n)=0 n<0.

h(n) = 0.4 h(n-1) + 5(n)

h(0) = 0.4 h(-1) + 5(0)=1

h(1) = 0.4 h(0) = 0.4

h(2) = 0.4

h(n) =0.4" for n>0

Q. y(n)-0.4 y(n-1) = x(n). find the anti-causal impulse response? h(n)=0 for n>

h(n-1) = 2.5 [h(n)- s(n)]
h(-1) = 2.5 [h(0)- s(0)] =-2.5
h(-2) =-25% . ........ h(n) = -2.5" valid for n<-1

Q. x(n)={1,2,3} y(n)={3,4} Obtain difference equation from i/p & olp

information
y(n) + 2 y(n-1) + 3 y(n-2) = 3 x(n) + 4 x(n-1) (Ans)

Q. x(n) = {4,4,}, y(n)= x(n)- 0.5x(n-1). Find the difference equation of the
inverse system. Sketch the realization of each system and find the output of each
system.

Solution:

The original system is y(n)=x(n)-0.5 x(n-1)

The inverse system is x(n)=y(n)-0.5 y(n-1)

y (n) =x (n) — 0.5 x(n-1)
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Y (2) = X (2) [1-0.5Z]

Y2 19572 System
X(2)
x (1) + Yy ei(n)
| =
Z—l
0.5
N
Q ¥ @)
.
Z—l
~—
o

Inverse System
y (n) - 0.5 y(n-1) =x(n)
Y (2) [1-0.5 2] = X (2)

Y@ 10521
X(2)

gn)=4sn)-25(n-1)+45(n-1)-25(n-2)=45(n) +25(n-1) - 25 (n-2)
y(n)=05y(n-1)+45(n) +25(n-1) — 25 (n-2)

y (0)=0.5y(-1) +45(0) =4

y(1)=4

y(2)=05y(1)-25(0)=0

y(n) = {4, 4} same as i/p.

Non Recursive filters Recursive filters
© N N

y(n) = > ax(n-k) y(n) = Y acx(n-k) — > by y(n-
k=—00 k=0 k=1

for causal system k)

_\ Present response is a function of
=Y axx(n-k)
k=0
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For causal i/p sequence

y(n) =Y akx(n-k)

k=0
Present response depends only on
present i/p & previous i/ps but not future

I/ps. It gives FIR o/p.

the present and past N values of the
excitation as well as the past N
values of response. It gives IIR o/p

but not always.
y(n) - y(n-1) = x(n) — x(n-3)

Q. y(n) = %[x (n+1) + x (n) + x (n-1)] Find the given system is stable or not?

Let x(n) = 5(n)

h(n) = <[5 (1) + 8 () + 5 (0-1)]

hO) = 3
h(D)= 3
h) = 3

S=>"h(n)< « therefore Stable.

1/3

]

-1 o] 1

Q.y(n) =ay(n-1) + x(n) giveny(-1)=0
Let x(n) = 5(n)
h(n) =y(n) =ay(n-1) + 5(n)
h(0)=ay(-1) + 6(0) =1=y(0)
h(1)=ay(0)+ 6(1)=a

h(2) =ay(l)+s(2)=a%....... h(n) =

y(n-1) = ~[y(n) ~ x()]

a" u(n) stable if a<1.
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y() = 2 [y(n+1) - x(1+1)]

V(1) = < [¥(0) - X(0)]=0
y(-2)=0

Q.y(n) = ﬁ y(n-1) + x(n) forn>0

=0 otherwise. Find whether given system is time variant or not?

Let x(n) = 5(n)
h(©)=1y(-1)+5(0)=1
h(1) = % y(0) + 5(1) = %
h(2) = 1/6
h(3) = 1/24

if x(n) = 6(n-1)

y(n) = h(n-1)

h(n-1) = y(n) = ﬁ h(n-2) + & (n-1)

n=0 h(-1) =y(0) =1 x 0+0 =0
n=1 h(0)=y(1)=%x0+ §(0)=1
n=2 h(1)=y(2)=1/3x1+0=1/3
h(2) = 1/12
~h(n,0) =h(nl) -~ TV
Q.y (n)=2nx(n) Time varying

Q.y(n) = %[x (n+1) + x (n) + x (n-1)] Linear

Q.y(nN)=12x(n-1) + 11 x(n-2) TIV
Q. y (n) =7 x*(n-1) non linear

Q. y (n) = x3(n) non linear

Q.y (n) = n’x (n+2) linear

Q. y (n) =x (n?) linear

Q. y (n) = ™ non linear
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Q. y (n) = 2X x (n) non linear, TIV
(If the roots of characteristics equation are a magnitude less than unity. It is a
necessary & sufficient condition)
Non recursive system, or FIR filter are always stable.
Q. y (n) + 2 y?(n) = 2 x(n) — x(n-1) non linear, TIV
Q.y (n) -2y (n-1) = 2™ x (n) non linear, TIV
Q.y(n)+4y(n)y(2n) =x(n) non linear, TIV
Q.y (n+l) —y (n) = x (n+1) is causal
Q.y(n) -2y (n-2)=x(n) causal
Q.y (n) -2y (n-2) =x (n+1) non causal
Q.y (n+l1) —y (n) = x (n+2) non causal
Q. vy (n-2) = 3 x (n-2) is static or Instantaneous.
Q. y (n) = 3 x (n-2) dynamic
Q.y (n+4) +y (n+3) = x (n+2) causal & dynamic
Q.y(n)=2x(en)
If =1 causal, static
a <1 causal, dynamic
a>1 non causal, dynamic
azlTV
Q. y (n) =2(n+1) x (n) is causal & static but TV.
Qy(m=x(nNTV
1.8 Solution of linear constant-co-efficient difference equation
Q. y(n)-3y (n-1) — 4 y(n-2) = 0 determine zero-input response of the system;
Given y(-2) =0 & y(-1) =5
Let solution to the homogeneous equation be
yn(n) = A"
AN-3aM-42=0
AM2[12-34-4]=0
A=-1,4
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Ya(n)=Cia1"+Cy 12" = Cy(-1)"+Cy 4"
y(0) = 3y(-1) +4 y(-2) = 15
. C1+ Cy=15
y(1)=3y(0) +4y (-1) =65
.. -C1+4C,=65 Solve: C;=-1& Cy=16
y(n) = (-1)™*+ 4™2 (Ans)
If it contain multiple roots yn(n)= C1 41"+ ConAs" + C3n? 1"
or 11" [Ci+nC; +n?Ca....]
Q. Determine the particular solution of y(n) + a;y(n-1) =x(n)
x(n) = u(n)
Let yp, (n) = k u(n)
k u(n) + a; k u(n-1) =u(n)
To determine the value of k, we must evaluate this equation for any n>1
k+a k=1

1
1+al

k =

1
Yp(n) = Tral u(n) Ans

x(n) Yo(N)

1.A K

2. Am" Km"

3. An™ Ko n™+ Kin™ + . Kn
4. A Coswon or A Sinwen K1 Coswen + Kz Sinwen

Q¥ = 2y(-D)- <y +x() XM =2" n=0
Lety, (n) = K2"

K2" u(n) =g K 2"! u(n-1) - %K 22 u(n-2) + 2" u(n)
Forn > 2

4K = g(ZK) i % K+4  Solve for K=8/5
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Yp (n) = 22” Ans

Q. y(n) — 3 y(n-1) - 4 y(n-2) = x(n) + 2x(n-1) Find the h(n) for recursive
system.
We know that y, (n) = C; (-1)" + C, 4"
Yp (n) =0 when x(n) = §(n)

for n=0

y(0) - 3y(-1) -4 y(-2) = 5(0) + 25 (-1)
~y(0) =1

y(1)=3y(0)+2=5

Ci+Cy=1

-C1+Cy=5 Solving C.= —é Co= g

- h(n) = [_é (-1)" + g4n] u(n) Ans

OR
h(n) — 3 h(n-1) -4 h(n-2) = 5 (n) + 25 (n-1)
h(0)=1
h(1) =3h(0)+2=5
plot for h(n) in both the methods are same.
Q. y(n) —0.5y(n-1) =5 cos 0.5nTT n>0 with y(-1) = 4
yn(n) = A"
A"—0.5 A" =0
A" 2-0.5]=0
2=0.5
~ yn(n) = C (0.5)"
Yp(n) = K1 cos 0.5n[] + K3 sin 0.5n[]
Yp(n-1) = Ky cos 0.5(n-1) [T+ K3 sin 0.5(n-1) [1
=-K;sin0.5n]T - Kycos 0.5nT1
Yp(n) - 0.5 yp(n-1) =5 cos 0.5 n[1
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= (K1 +0.5Ky) cos 0.5 n[1-(0.5 K; — Ky) sin 0.5nT]
Ki+05K;=5
0.5 K; —K;=0 Solving we get: Ki=4 & Ky=2
= Yp(n) =4 cos 0.5 nTT+ 2 sin 0.5nT]
The final response
y(n)=C (0.5"+4cos0.5nT+ 2sin 0.5n]]
withy(-1) =4
4=2C-2
l.e. C=3
L y()=3(0.5)"+4cos0.5nT+2sin0.5nT forn>0
1.9 Concept of frequency in continuous-time and discrete-time.
1) Xa () =ACos (Qt)
X (nTs) = A Cos (QnTs)
= A Cos (wn)
w=QTs

b\ AN
]

- T -

Q=rad /sec w =rad / Sample
F=cycles/sec f=cycles/Sample
2) A Discrete- time — sinusoid is periodic only of its f is a Rational number.
X (n+N) = x (n)
Cos 2zfo(N+N) = Cos 2zfy n

27fN=27K=> fo= %

Ex: A Cos (%) n
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W= =2 rf

o|X

1

f= > N=12 Samples/Cycle ;

Sampling Period
Q. Cos (0.5n) is not periodic
Q. x(n) =5 Sin (2n)
22f=2 =>f= i
I
Q. x(n) =5Cos (6 n)

22Ff=6r =>f=3
_ 5 Cos 81
Q. x (n) =5 Cos 3
27[f:6_H :>f:i
35 35

Q. x (n) =Sin (0.01 zn)

0.01

27Z'f:0.0172' :>f:T

Q. x(n) =Cos (3zn)

fo =GCD (fl, fz) & T=LCM (T1, Tz)

Fs= Sampling Frequency; Ts =
Non-periodic
N=1 for K=3 Periodic
for N=35 & K=3 Periodic
for N=200 & K=1 Periodic
for N=2 Periodic

For Analog/digital signal

[Complex exponential and sinusoidal sequences are not necessarily periodic in

‘n” with period (jv—lg) and depending on Wo, may not be periodic at all]

N = fundamental period of a periodic sinusoidal.

3. The highest rate of oscillations in a discrete time sinusoid is obtained

whenw = r or -
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X (n)=Cos (Won)

A) B)

S S | I B R R

N=4 N=2

Discrete-time sinusoidal signals with frequencies that are separated by an

integral multiple of 2 ~ are Identical.

-wFs <2xzF < 7z Fs

o
TS TS

-7< QTs<rx
Therefore - z<w<rx
5. Increasing the frequency of a discrete- time sinusoid does not necessarily

decrease the period of the signal.

x1(n) = Cos (%) N=8
xa(n) = CoS (3%”) N=16 3/8> 1/4
2 7 f=3~/8
= f= i
16

6. If analog signal frequency = F = % samples/Sec = Hz then digital frequency

f=1
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w=Q T,
271T=2 2FT; = f=1

X (= Cos(_-t) X (©=Cos(Zn)

/IN__/] 1. 1l

S
™ S
\__ ) L }
+— T=8 —
=8
11
27F= 4 ' 2xf=x/4
F=1;T=8; f=X  N=8
8 8
7. Discrete-time sinusoids are always periodic in frequency.
Ts =t:=1/Fs

-1 ~0.5 0 0.5 1 F=Hz
iz is Te is

* i i * * " f=FTs Cy/Sample
-1 -0.5 0 0.5 1 Y P

. . . . . =Q =2aF

— eIl - I 2l

is is 0 is Tz

» * . . . s fF —=27fF
27 -7 0 4 2n

Q. The signal x (t) = 2 Cos (40 zt) + Sin (60 ~t) is sampled at 75Hz. What is

the common period of the sampled signal x (n), and how many full periods of x (t)

does it take to obtain one period of x(n)?
33



F1=20Hz F, = 30Hz
_20 4 K1 [ - 30_2_K2

1= - =-C

75 15 N1 T 7575 N2
The common period is thus N=LCM (N1, N2) = LCM (15, 5) =15
The fundamental frequency F, of x (t) is GCD (20, 30) = 10Hz

And fundamental period T = % =0.1s

Since N=15
1sample ---------- L sec
75
15 sample ----------- ? => 1 _g2s
75

. So it takes two full periods of x (t) to obtain one period of x (n) or GCD (Kj,
K;) =GCD (4,2) =2
Frequency Domain Representation of discrete-time signals and systems
For LTI systems we know that a representation of the input sequence as a
weighted sum of delayed impulses leads to a representation of the output as a
weighted sum of delayed responses.
Let x (n) = "
y (n) =h(n)=x(n)

= Y h(k)x(n—k) = > h(k) giw
k=—o0 k=—o0
= g 3 h(k) @ik
k=—c0

Let H (&™) = > h(k) ei" js the frequency domain representation of the

k=—o0

system.
=y (n) = H (elv) e"n e™" = eigen function of the system.
H (M) = eigen value
Q. Find the frequency response of 1% order system y (n) = x (n) + a 'y (n-1)
(a<1)
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Let x (n) = eW"
yp (n) = C e*"
C e =g 43 CeWwmd
C e [1-aed™] = elWn
1

€= [1-ae "]

1 1
[L—ae "]  1-a(cosw— jsin w)

Therefore H (V) =

_ 1
He™) =
| | J1-2acosw+a?
- aSinw
ZH(Ee"™) =-Tan'(——)
1-aCosw
e
1—a P \
1 ‘\_f
T 1+ er
- 7T 0 T W
e Ta.n'la
: II
/\ > 11
ST ] E ! w
2
_Tan‘'a

Q. Frequency response of 2" order system y(n) = x(n) - %y(n -2)

x(n) = e

yp(n) =celn

Cejwn =e jwn o _ lce jw(n-2)
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20 +16Cos2w

)

- . - 1
celn (1+£e‘21w) =e™ . _
2 1 -2jw |C|_
L+oe” 5+4Cos2w
Zo=tan [ N2
2+ Cos2w
|C| s
.
T "
e |tan
A NENVAN B
7T Y R )
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2. POWER, ENERGY and CONVOLUTION

Continuous Time Qot =QonTs =won Discrete Time
Periodic f(t) = N —1 sz_;zn
— - Periodic  xy(n) = che "
> ¢, el WS
k=—o0
DTFS
Non periodic Periodic Cy =
17 -
_ —j f (t)e K®tdt -2k
i T2, me
.., 27NTS
1 - ﬂ.: i k=0 to N-1
— S x(n)e
NTSs
T=NTs
t=nTs : dt=Ts

Non-Periodic f(t) =

17 .
— | F(w)e**dQ
Zﬂ_jw (W)

Non-Periodic F(w) =

j f (t)e °tdt

Non — Periodic x(n) =
1 2r _
— IX (w)e™dw
27+,

o0

periodic xw) = > X(n)e """

N=—o0

X(w) = FT of DTS
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2.1 Energy and Power

Zx(n

N=—00

- S -

1 ° * < —jwn
ﬂlx (W)[nz;ox(n)e }dw

(n)_ Zx(n)— j X " (w)e " dw

1 %F .
E!X (W) X (W) dw
1 = ’
- j | X (w)| dw
2
Therefore: E = :Z:‘X(n)‘ __”X(W)‘ dw Parsval’s Theorem

P - N—>002N

2O )=

2

N-1
- 2[G

k=0

Therefore

Z\ (n)\

n—N

: %fz;flx(ml

for non periodic signal

for periodic Signal

2T

1 N N-T 2Ty
=>x(n)) C.e N
N n=0 k=0

Nn=0

N —1 < 1 N2 _JZ_ﬂnk
> C | o> x@me '
k—0 N

N —1 2
e=n 2_[CK
k=0
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Ex: Unit step

P= NI:thN +1Z ()

N +1

1 -
= hll_jo SN +1 2 Power Signal

E= ©

jwon
Ex: X (n) = Ae

2
‘ eonn
b= N —00 2 N + 1 nz—l\l
= ATL+1+........
B I\II:;E; 2N +1 [ ]
Lt AERN+D )
T o 2N +1 it is Power Signal and E = o0
Ex: x(n) =nu(n) neither energy nor power signal

Ex: x(n)=3(0.5" n=0

00 9 . n 1
= 2X()=)9(025)" = 25—12J e 3" =

N=-w n:o - =0 1_ a

Ex: x (n) =6 Cos

,0,—6,0
6 }

whose periodisN=4 ~ x (n) =

EZslxz(n) —1[36+36] =18W
b= 4n=0 4

. 27N

Ex: x(n)=6e a whose period is N =4

{
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3 2
_ 1Z\x(n)\ = 1[36+36+36+36] — 36Watts
P= 44 4

2.2 DISCRETE CONVOLUTION

oW S

x(0) @ ]

x(1) g @) )

x(k) o k) D

i x(k) o (k) e
"

x(0)h(n)  Linearity

x()h(n-1) Shift Invariance

. It i1s a method of finding zero input response of linear Time Invariant

system.

Ex: x(n) =
h(n) =

u(n)
u(n)

(e SuKu(n—k)

ukk)=0 k<0
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u(n-k) =0  k>n

kz_(;“(k)“(”‘k) - Z_:l = (n+1) u(n) = r(n+1)

Q. x(n) =a"u(n) and h(n) =a"u(n) a<1l find y(n)

y(n) = kZO a“a"™ = a" (n+1) u(n)

Q. X(n) =u(n) and h(n) = a¢"u(n) «<1findy(n)

v = D ok uk)uink) = 2. ok

n
kK =—c0 k=0

(1-a™)/ (1-a)

The convolution of the left sided signals is also left sided and the convolution

of two right sided also right sided.
Q. x(n)=rect(%)=1 ‘n‘ <N
=0 else where
h(n) = rect (%)
y(n)  =x(n)~h(n)
= [u (n+N) —u (n-N-1)] = [u (N+N) — u (n-N-1)]
=u (n+N) = [u (N+N) — u (n-N-1)] — u (n-N-1)* [u (n+N) — u (n-N-1)]
=u (n+N) = u (n+N) — 2 u (n+N)+u (n-N-1)] + u (n-N-1) ~u (n-N-1)
= r(n+2N+1) — 2r(n) + r(n-2N-1)
)

n
2N +1

= (2N+1) Tri (

Tri(y=1- [0 g n <N
N N

=0 elsewhere.
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AN

Forn=2

0 y | (2N+1) Tri[ (W (2N+1)]

\

R (n-2N-1)

-2r(n) ””ﬂﬁff};ﬁ#g:hﬂ

Q. x(n) = {2,-1,3}

1
T

h(n) ={1,2,2,3} Graphically — Fold-shift-multiply-sum

y(n) =
1 2 2 3
2 2 4 4 6
-1 -1 -2 -2 -3
3 3 6 6 9
y(n) ={2,3,510,3,9}
Q. x(m=1{4,1 3} h(n) = {2,5,Q 43}
2 5 0 4
4 8 20 0 16
1 2 3) 0 4
3 6 15 0 12

y(n) = {8,22,11,31,4,12}

]

Note that convolution starts at n=-3
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22

Q)

hn): 2 5 0 4
x(n): 4 1 3
8 20 0 16
2 5 0 4
6 15 0 12
ym: 8 22 11 31 4 1

Q. Convolution by sliding step method:

)

2504
314

i)

y(0) =8

2504
314

V)

650 vy@) =11

2504
314

h(n)= 2,5,0,4;x(n)=4,1,3

i) 2504
314

2 20  y(1)=2+20 =

Iv) 25014
314

15 0 16 y(3)=31

Vi) 2504
314
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04 y@)=4 12 y(5)=12
If we insert zeros between adjacent samples of each signal to be convolved,
their convolution corresponding to the original convolution sequence with zeros
inserted between its adjacent samples.

Q.h(n)=2,504;x(n=41,3 X(z) = 223+52%+4 ; X(z) =

47°+7+3

Their product Y(z) = 82°+227*+1173+317%+4z+12

y(n) = 8,22,11,31,4,12

h(n)=2,0,5,0,0,0,4;x(n)=4,0,1,0,3
H(z) = 2z%+52*+ 4 ; X(2) = 42*+7%+3
Y (z) = 8210+2275+3174+47%+12 y(n) = {8,0,22,0,11,0,31,0,4,0,12}
Q. Compute the linear convolution of h(n)={1,2,1} and x(n) ={ 1, -1, 2,1 ,2, -

1, 1, 3, 1} using overlap-add and overlap-save method.

h (n): 1 2 1

X (n): 1 -1 2 1 2 -1 1 3 1
x1(n): 1 12

X2(N): 1 2 -1

x3(Nn): 1 3 1

yinN)=(h(n)=xi(n))1 1 1 3 2

ya(n) = 1 4 4 0 -1
y3(n) = 1 5 8 5
1
y(n) = {1 1 1 4 6 4 1 4 8 5
1} OVER LAP and SAVE method
h (n): 1 2 1 0 0 (N2=3)
x1(n): 1 -1 2 1 2 (N3+N2-1) =5
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X2(Nn):

x3(n):

yim= 11 1
y2(n) =
ys(n) =

52
14 4

73
15 8

5

1}

ym= {1 1 1
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3. DISCTRETE FOURIER SERIES
Q. Determine the spectra of the signals
a. x(n)=Cos 2 zn

Wo = \/E T
fo = 1 is not rational number
V2

- Signal is not periodic.

Its spectra content consists of the single frequency

T
b. x(n)=Cos 5 n after expansion x(n)={ 1,0.5,-0.5,-1,-0.5,0.5}
fo= % N=6
1 ~ ik
6
Ci = gZX(n)e k=010 5
n=0

Vs or —'4—”k —js—ﬂk

%X(O)+x(1)e T ixe f +x(Qe* rx(de ® +xB)e

1
For k=0  Co = 6[x(O) +X(0) + X2 +x@) +x(@) +X6)] = ¢
Similarly

K=1 C1:0.5 , C2:O:C3:C4,C5:O.5

Or
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- C0+C1 € +Cze

J'zln j4—ﬂn
6 6

By comparison Clzé

Since

6 _
e =e

o
P
~—~
>
) —
I
=
__I—‘
_H
o
o
S’

1 —JZHT
CK=ZHZ_;4X(n)e
1 _j2k
_Z|1+1e 2
_1 1
CO_E ; ClZZ(l_J)
1
CO‘:E & Cp=0
V2 -z
CJZT & Ci= "4
Cz‘:O & C, undefined
J2
Cs‘:T

+Cse

5-6

)

.6
j—n

6

k=0, 1, 2, 3

+C,4

C2:O;

1=

87
J?n
€ +C5 e

107

j——n

6

1 i
C3:Z(1+ J)

51 )
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oF—

Sl

¥ ]

ooy

il

1
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L

5|3

W ——t
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3.1 PROPERTIES OF DFES
1. Linearity

prs [X,(M]=Cy
DFS [522 (n)] =Cy,
DFS [ai1 (n) + b)?z (n)] — aCkl + bCkz

2. Time Shifting

—j 2 zzmk
DFS [X(n_m)]:e N Cy
3. Symmetry
DFS [)?* (n)] — C*—k Ck =

.2k

N —1 o
N Nn=0

27 nk

DFS )?*(_n)] — C*k X(Nn) = che N

DFS [Re[)?(n)]] = DFS|:)?(n) ‘;)?*(n):| = E [Ck + C*—k ] — Cke

2

DFS

imizen]-ors X002, e )-c,

If )?(n) Is real then
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%(n) = X(n) +2x (—n)
% (n) = X(n) —2x (—n)

_[x.m]= 1[(: +C*|=Re[C

ors[% W] =3[0, €= jimic,
Periodic Convolution
] [NZ‘i X, (m)X, (n— m)} =
I x(n) is r:ej
C, =C
Re[C,]=Re[C_, ]
IM[C, ]=-Im[C]

C.=IC.|
3.2 PROPERTIES OF FT (DTFT)
1. Linearity

y (n) =ax; (n) + b x2(n)
Y (e™)=aXi(e™)+b Xye™)



2. Periodicity

H (e j(w+27) ) - H (e J.W)

3. For Complex Sequence
h (n) = hr(n) +j hu(n)

o0

H(e™) = Z[ hg (n) + jh, (n) J[Cos(wn) - jSin(wn)]

N=-00

f;o[ o () Cos@wn) +h, (MSinwN) = . @ ™)

3 [, () Cos(wn) — hy, (NSInGn) — 1y, e 1"

nN=-o0

H (™ )|-|Hg (™) + jH, (™)

_ JHZ(e™) +H2(e™) = JH(e™)H (")

ZH(e™) = tan 1{ al (ej.w)}
He(e™)

4. For Real Valued Sequence

H(e™) - D hne

N=—o0

_ S h(n)Cos(wn) — j > h(n)Sin(wn)

N=—0 =

= He (&™) — jH, (&™) @)
H(e ") - ;h(n)ejwn

_ Y h(n)Cos(wn)+ j > h(n)Sin(wn)
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o Gl R [ T il p—— (b)
From (a) & (b)
Ha(e™) = Hy(e ™)
H, (&™) =-H, (™)

Real part is even function of w

Imaginary part is odd function of w
HEe ™)=H"(e")
=>

HE™)|[=yHE")H ) =JH @™)He™) =[HE™)

Magnitude response is an even function of frequency

ZH(@E™)=tan 1{@} = —tan 1{@} =—/HE")
He (™) He (™)

Phase response is odd function.

5. FT of a delayed Sequence

FT [h (n-K)] = n; h(n —k)e ™"

Put n-k=m
Z h(m)e—jw(m—|—k)
Y —" _iwm _ — jwk
_e M ST h(mye iy my €7
6. Time Reversal
x(n) — X (w)
X (-n) - X (-w)
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o0

FT [x (-n)] = D x(—n)e™ "

N=—o0
Put -n=m

o0

> x(m)e" = X (-w)

M=—o0

7. Frequency Shifting

xn) € 77" x wewe)

FTxm €77 1= Z x(n) € Jwon g-iwn

N=-—00

o0

- 2w @ (g

N=—o0
8. a. Convolution
X1 (n) = X2 (n) — Xu(w) Xa(w)

© 0

Z [X1 (n) * X2 (n) ] e-JWn = Z k;w [)(1 (k) Xo (n_k) ] e-jwn

Put n-k =m

o0
0

= Z X1 (k) Z [Xz(m)] gIw (m+k)

N=-—00 m=—o0

o0
0

= Z Xy (k) ek > [X2(m)] edvm

= Xg(w) Xa(w)
b. % [X2(W) « Xo(W)] = X1 (n) X2 (n)

9. Parsevals Theorem
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0

1 v
2 % ()= 5 | D) X )]

N=—o0

dX (w)
nx(n) —j W

10.F T of Even Symmetric Sequence
o0
D Y
He )= h (n) e""

-1 0
-2 h e-iwn+h(0)+z h (n) eiwn

n=—o0 n=1

Letn=-m

= Zl h(-m) &M +h (0) + 2 h () e

n=1
Let h (-m) = h (m) for even

Therefore= h (0) +2 i h (n) Cos (wn) is a real valued function of
=1

frequency
Z£0=0 , H(e™)>0
ZO=xmr  H(e™)<0
11.F T of Odd Symmetric Sequence
For odd sequence h (0) =0

He")= Z h (n) [e"n - gl ]

n=1

=-j2 Zl h (n) Sin (wn) H; (e'™") IS a imaginary valued
n=

function of freq. and a odd function of w
e, HEe"™)=-HE™)
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‘H(ejw)‘ = Hi (™) for Hi(e")>0
=-H(e") for Hi(e™)<0

T .
ZH (e’ ):E For w over which  H,;(e™)>0

T

= Ei” for w over which H (e™)<0

12. x(0) = 2_ j X (w)dw Central Co-ordinates

13. Modulation

X(w+w,) X(w-w,)

Cos (Won) x (n) — 5 + 5

3.3 FOURIER TRANSFORM OF DISCRETE TIME SIGNALS

0

X (w) = Z X (n) gwn

N=—o0

0

F T exists if Z ‘X(n)‘ <®

N=—0

The FT of h (n) is called as Transfer function
Ex: hm):é for-1<n<1

=0 otherwise

1 1 )
_ o Y —e 11w w]_ 1
Sol:  H(e™)= r;ls = 3[e +1+e ] - 3[1+ 2Cos(w)]
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Ex:

W 1\ /
0 1 i .
\ 2 .
z 1 oz
2 3
1
i 3

h(n)=a"u(n)

nA—jwn
H(e™) = Z(;a ¢
n=

. 1
z: —jwyn i
) nzo(ae V=1 ae

x(n) =n «"u(n) a<l

. d 1
ne'u(n) - de 1_ e

ae™ v
= (l-ae™™)?
] iane—jwn i(ae—jW)n #
Hint: @ "u(n) —» s = — = l—ae‘jw

x(ny=a" 0<n<N
Or
X(n) = a" [u(n) —u(n-N)]
= a"u(n) — a™ "N u(n-N) Using Shifting Property
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- jwN
Xw) =1 g M 1-oe ™"
1 . (ae—jW) N
= 1= ae—jw Ans
x(n)= & In| ‘05‘ <1 two sided decaying exponential

x(n)= a"u(n) + a&™u(-n)- 6(N)  using folding property

1 1 1-a
= - + - _1 =
1-ae™ 1-ae’ 1—2aCosw + o
x (n) =u (n) Since u (n) is not absolutely summable
1
we know that u () = * o(w) + m
1

Similarly X (W)= 1 _ g-Iw + S(W)
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4. DET (Frequency Domain Sampling)

The Fourier series describes periodic signals by discrete spectra, where as the
DTFT describes discrete signals by periodic spectra. These results are a consequence of the
fact that sampling on domain induces periodic extension in the other. As a result, signals that
are both discrete and periodic in one domain are also periodic and discrete in the other. This

Is the basis for the formulation of the DFT.

0

—jwn
Consider aperiodic discrete time signal x (n) with FT X(w) = Z x(n)e

N=—o0

Since X (w) is periodic with period 2z, sample X(w) periodically with N equidistance

samples with spacing oW = ZW”
X ()
[ A
5w
0] 6= 2 54 kdw 27 W

K=0,1,2....N-1

X (%) i x(n)e_J

The summation can be subdivided into an infinite no. of summations, where each sum

contains
27K L Sk
X (Tj — trasrsssnnss Z X(n)e + Z X(n)e +
n=-—N
2N-1 _le
dox(ne N A
n=N
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o IN+N-1

3 Sy

T = n=IN

Put n = n-IN
= N-—

D Zx(n—lN)e“ A
|=—0

11
M
MS
Py
S
|
=
Kool
=z

Therefore Ck= N X(K) k=0 to N-1

D] =) ES—— Xp () = g X(k) c n=0toN-1

This provides the reconstruction of periodic signal xp(n) from the samples of spectrum
X(w).
The spectrum of aperiodic discrete time signal with finite duration L<N, can be exactly

recovered from its samples at frequency WF%.

Prove: x(n) = xp (N) 0<n<N-1



L N
Using IDFT
N-1 270
x(M= =3 X(k) e'v"
N i
N-1 1 N2 jlen )
Xw) =2 [ 2 X(Ker]eM
n= k=0
N-1 N-L 2R
=3 XMLy X e
k=0 N n=0
. 1 N-1 i
If we define p(w) = N eIwn
n=0
Sin WN N-1
—jwN I N—L
:%{11 e—iw} ) ZweJ[ZJ
—€ NSin—
S 27k
Therefore: X (w) = ) X (k) P(W-T)
k=0
Atw:% P (0) =1
27K \ _
And P (w-=—) = 0 for all other values
N-1 N-1 27Zk
X W)= Xk = ¥ X(Z)
k=0 k=0
Ex: x(n) =a" u(n) O<a<1

The spectrum of this signal is sampled at frequency sz%. k=0, 1.....N-1, determine

reconstructed spectra fora=0.8 and N =5 & 50.

1
X = :
(W) 1-ae™
X(Wk)z ;Z”k k:O, 1, 2...N-1

]
l-ae N

Xp (n) = ix(n— LN) = Zo:an-m

|=—0



n

O0<n<N-1

> a
— an ZaIN —
N
1=0 l1-a

Aliasing effects are negligible for N=50

IX(“) N

MMTH,mn: y .
1§(n) X( 27 )

IT R AN T I
L@ (27)

|[M“..N:n, ||MHHM

If we define aliased finite duration sequence x(n)

%(n) = x, (n) 0<n<N-1
= otherwise
N N-1 _ N-1
_ o —jwn —ij
X (w) =2 &(m)e _ 3 x, (nye ™
n=0
N-1 n N-1
a i 1 -
_ e jwn _ ae—jW n
nzz;‘l— ah 1-a" nz_;( )

l1-a | 1-ae
_i2
X(zﬂKj_ 1 |1-a“e "N
N ) 1-a" R
N l-ae i
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N
l1-ae N
i 22K
. Although X (w) = X (w),the samples at Wk:T are identical.
1 1
Ex: Xw)y="" &  XK=—" 2
l1-a e™ l-ae N
Apply IDFT
.27k
182 el
x(n) = N&| T e using Taylor series expansion
“Ul1-ae "N
1 N 2k o 2
_=>leeN Hae N
- N
k=0 r=0

r=0 k=0
=0 except r = n+mN
= N n C Nym
Sx(m=2am™ o~ a"y @)
m=0 m=0
an
“1-a"

The result is not equal to x (n), although it approaches x (m) as N becomes «.

Ex:  x(n)={0,1,2,3}find X (k) =2

. 27K

3 2k
X (K) = Z x(n)e ¢
n=0

3

X (0) = Z(; X(N) = 0+1+2+3 =6
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3 .27

27,
X(1):Zx(n)e R

n=0
X (2)=-2
X (3) = -2-2]

+2j

4.1 DFT as a linear transformation

2T

LetWN =e N

=z

1

X (K) = X(MW

T
o

LS xmow-
x(n)=ﬁ kzzo () N

[ x(0)
X(1)
Let XN = . XN =
X(N -1)
1 1 1
1w w2
1 w2 wy

k=0to N-1

n=0,1...N-1

- X(0)

X (1)

ooooooo

-------

The N point DFT may be expressed in matrix form as

DET IDET

Xn=WnN Xy XN =




= Xy =Wy X
WNK+N _WNK
_ 1 * K+E
Wy _WWN 2. Wy 2 =-Wy

Ex: x(n)={0,1, 2, 3}

Xa= W4X4 =

IDET

Q

1 1 1 1
1 wr ow2owg

R R AR A

1w owpow,

1 1 1
1 —j -1

X .n) ={10.5}

h(n)={0%51}

N
N—

1
]

1 -1 1 -1
1) -1 -]

1 1
1 -]
1 -1
1 ]
0

1

21 Ans
3

1 1
1
1 -1
-
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Ll
s

-1

Find y (n) = x (n) @ h (n) using frequency domain. Since y (n) is periodic with period 2.

Find 2-point DFT of each sequence.
X(0)=15 H(0)=15
X(1)=05 H()=-05

Y (K) = X (K) H (K)

Y (0)=225 Y (1)=-0.25

Using IDFT y(@©0)=1; y()=1.25
j(n)=hm@x(n)= Y h(k)X(n-k)
k=—00

YRR (n—k)

7(0) . XA (k)

_X(0)h (0) + X()h (1)

=1*05+05*1=1

@) - 2 XEOAA-k)
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X(0)h (1) + X()h (0)

1*1+05*%0.5=125

Y(2) _ > x(Kh@E-k)

k=—c0

X(0)h (2) + X()h (1)

1*05+05*1=1

y(n) ={1,1.25,1,1.25....}

Q. Find Linear Convolution of same problem using DFT

Sol. The linear convolution will produce a 3-sample sequence. To avoid time
aliasing we convert the 2-sample input sequence into 3 sample sequence by padding with
zero.

For 3- point DFT

X(0)=15 H(@)=15

.27 _le
N

X (1) = 1+0.5 € H()=05+ €

Ar A
_Ji

3 H@)=05+€ °

X (2) =1+05 €
Y (K) = H (K) X (K)
Y (0) = 2.25

2 A
Y(1)=05+125€ 3 +05€
ax jon
Y(2)=05+125€ > +05€
Compute IDFT

. 27kn
J

1 2
_—E Y(k)e 3
y(n)—?,k:O
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y(0) =0.5
y(1) =1.25
y(2) =0.5
y(n) ={ 0.5, 1.25, 0.5} Ans

4.2 PROPERTIS OF DFT

1) Linearity
If h(n) =a hi(n) + b hy(n)
H (k) = a Hu(k) + b Hao(k)
2) Periodicity H(k) = H (k+N)

5 NN = m;ﬁh(n +mN)
4) y(n) =x(n-no)
. 2 7z2kNg
N

Y (k) =X (K) e

5) y(n) =h(n)~x(n)
Y (k) = H (k) X (k)

6) y (n) = h(n) x(n)

Y (K) = %[H (K) @ X (k)]

7) For real valued sequence

N—1
H, (k) = > h(n)Cos 27KN
n=0
N -1
H, (k) = —> h(n)Sin 272KN
n=0
a. Complex conjugate symmetry

h (n) -H(k) = H*(N-k)
h (-n) -H(-k) = H*(k) = H(N-k)
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I. Produces symmetric real frequency components and anti symmetric

N

imaginary frequency components about the 2 DFT

Ii. Only frequency components from 0 to % need to be computed in order

to define the output completely.

b. Real Component is even function

Hr (k) = Hr (N-K)

C. Imaginary component odd function

Hi (k) = -Hi (N-k)

d. Magnitude function is even function

\H(k)\ = \H(N —k)\

e. Phase function is odd function K- (0
/H(K) = —/H(N k)

f. If h(n) = h(-n)

H (k) is purely real

g If h(n) = -h(-n) /\
H (k) is purely imaginary S T ‘ et
8. For a complex valued sequence N
X'(n) X (N-k) = X*(-k) [

~ 15 called as folding symmetry
2

DFT [x(N)] = X(K) :Z__:X(n)WS -
X'(K) = S =™ (MW"

X*(N-k) = Z_ X" (MW~ =X"(-k)

N —1
DFT [x"(n)] = Z X" (MW" - X*(N-k) proved
n=0

Similarly DFT [x"(-n)] = X"(k)



9.Central Co-ordinates

1 N -1 N_1
0= N 2 X0 x(By= 2D XM Neeven

N —1 N1
x(0)= 2 %(M) x ()= 2 (D" x(n)

10. Parseval’s Relation

N Z\x(n)\ Z\X(k)\
Proof: ths N ?Z; x(N)x" (N)
N :sz(n)[%:Z:X*(k)wN“k]
Z x (k)[z X(NW,5 ]

N-—1 . N 1 2
- 2 Xk = 22X ()

11.Time Reversal of a sequence

X((=M)y =X(N =n) & X((-K))y = X(N -k)

Reversing the N-point seq in time is equivalent to reversing the DFT values.

N —1 — 27K
DFT [X(N —n)]: ZX(N —n)e N
n=0
Let m=N-n
N — jilfzk(N_m)
_ > _x(m)e m=1to N = 0 to N-1
Nn=0
N —1 — 127K
- > x(m)e N
m=0

N=even
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——127nn

N (N —k)
E x(m)e = X(N-K)
12.Circular Time Shift of a sequence
—i27k,
x(Nn — 1), <> X ((k)e N
—jZian

DFT[x(n—1), |= Zx(n—I)Ne N

1-1 _j27an N —1 —j27zkn
_ > x(n=DHye N S x(n—1) e N
n=0 n=I
N —1 —j27K

I— —Jj27K

Zx(N+n—I) e v ", D X(N+n—le N

n=lI

Put N+n-1 =m

N-1 —j27K 2N —1—1 — 27K
— 22 (m+1) (m-+1)
E x(m)e N E x(m)e N
" m=N-l ¥ m=N

N to 2N-1-l is shifted to N = 0 to N-1-
Therefore 0 to N-1 = (0 to N-1-L) to ( N-L to N-1)

N1 ~ 2 ()
D> x(m)e N
Therefore
m=0
N —1 —j%m j 2 7zK I
2 xme N e N
" m=0
_ 27k
-xk) € N RHS

13.Circular Frequency Shift
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2

x(n)e' N <> X (k—1),

2 N—1 jﬁ _j27ZKn
=g N N
DFT [X(”)e N J - ZO x(n)e €
N=

_>xme VUL X (K — 1)y s

14.x(n) <> X(K)

k
£x(n), x(n), X(n).......x(n)} < M X ()

(m-fold replication)

X(%) < {X(k), X (K),-..... X (k)} (M- fold replication)

2,3,2,1 -5 8,-2,0,j2
Zero interpolated by M

{2,3,2,1,2,3,2,1,2,3,2,1} - {24,0,0,-6,0,0,0,0, 0, j6, 0, 0}
15.Duality

x(n) <> X(K)
X(n) <>N x(N-k) O0<K<N-1

272'/1
- —Z X (A)e’ N
27?/1(N_k)
x(N-K) = NI Z X (/”L)e
-2
_— Z X (e
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.27
J

N1 _
N X(NK) = ; X (1)e N

N —1 _j272kn
N
- ZO:X (n)e =DFT[X(n)] LHS proved
N=

srepon o Xen (K) X () 5[X DX ()]

X op (K)

j Im[x(n)] <

Xep (n) <~ Re[X(K)]

Xop (N) < Imix (]

_ 1
Xep (n) ~ Even part of periodic sequence = & [x(n) + x((—n)) ]

_ 1
XOD (n) ~ Odd part of periodic sequence = E [X(n) — X((—Nn)) ]

N —1
nk
Proof: X(k) = Z=: X(MWy
XNk = D XEMW™ = X ((—K))

N —1
X*(k): z X (n)WN_nk
n=0

N -1
iy = 2 (MWK = X7 ()
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2 2 n=0
= DFT of [Re[x (n)]] LHS

1 2K (MXE(N) L1 > X ()X S ()

X ((K)y + X" (k) _ENZ‘l

Lety(n) = X1 (n) X; (n)

V= o X2 00 @ X (k)]

23 amxc k]

Vo 2 Xamx ]

Using central co-ordinate theorem

N —1
V= 2 Xa (Mx5 ()
n=0

N1 N —1
Therefore Z Xy (n)x2 (n) = % Z Xl(k) X ; (k)
n=0 k=0

QUESTIONS
1Q. (1) {1,0,0,....... 0} (impulse) «»{1,1,1.....1} (constant)
(1) {1,1,1,...... 1} (constant) «») {N,0,0,....... 0} (impulse)

[x(n) + x" () v 7

_ —j2zk \"
n 1_aN NZiL oe JN :1_(a N )N
(i) " > 2= 2 S
1—e N - l1-a N

(iv) Cos[zmTkojH %[50( —k;)+o(k—(N _ko)]

(Impulse pair)
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Or Cos (2 mf ) = Cos (wn)
j2mk, —j2mnk,)
e N +e N
Sol. x(n) = 2

j2/mk, j2m(N—k,)
e N e N
- 2

We know that 1 <> N 5(k)

j2mKo

x(nNe N  — X(K -Ko)

Ik + ok~ (N -k,

x(n) —

I.  Inverse DFT of a constant is a unit sample.
Il. DFT of a constant is a unit sample.
2 Q. Find 10 point IDFT of
X(k) =3 k=0
=1 1<k<9
Sol. X(k) = 1+2 (k)

-1+ %10 5(K)

1
x(n) = g + 5(”) Ans

3 Q. Suppose that we are given a program to find the DFT of a complex-valued sequence

x(n). How can this program be used to find the inverse DFT of X(k)?

N-1

2 XMWt

X(k) = o
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1) X (kW™
XM =N k=0
NS .
NX*(H)Z — X (k)\/VN

1. Conjugate the DFT coefficients X(k) to produce the sequence X*(k).
2. Use the program to fing DFT of a sequence X*(k).
3. Conjugate the result obtained in step 2 and divide by N.

4Q.  x(n)={},234,50,00}
(i) fo(n) = xp(n-2) ={9,0,1,2,3,4,5,0}

(ii) go(n) = xp(n+2) = {3, 4,5,0,0,0, 1, 2}

(iii) hy(n) =xp(-n) ={1,0,0,0, 5, 4, 3, 2}
5Q. x(n)={1,1,0,0,0,0,0,0} n=0to7 FindDFT.

1 —j2k — J7K
8 4
X(k)zgx(ﬂ)e :1+e k=0to 7
X(0) = 1+1 = 2
—jr

x@=1+€ % =1707-j0.707
-jr
X@2)=1+ € % =1
~j3x
X(3)=1+€ * =0.293-j0.707
X(@4)=1-1=0
By conjugate symmetry X(k) = X*(N-k) = X*(8-k)
. X(5) = X*(3) = 0.293 + j 0.707
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X(6) = X*(2) = 14
X(7) = X*(1) = 1.707 + j 0.707
7. X(k)={2,1.707 - j 0.707, 0.293 - j 0.707, 1-j, 0, 1+j, 0.293 + j 0.707, 1.707 + ]

0.707 }
6Q. x(n)={1,2 1,0} N=4
X(k) ={4,-j2, 0, j2}
(i) y(n) = x(n-2) = {1, 0, 1, 2}

_j2ﬂk(no=2)
YK =X(Ke 4 =4, j2, 0, -j2

(i) X(k-1) = {j2, 4, -j2, 0}

27 In

IDET = x(n) € ™
= x(n) € 12 ={1,j2, -1, 0}

(i) g(n) = x(-n) = 1, 0, 1, 2

G(k) = X(-k) = X*(k) = {4, 2, 0, -j2}
(iv) p(n) = x*(n) = {1, 2, 1, 0}

P(k) = X*(-k) = {4, 2,0, -j2}* = {4, -j2, 0, j2}
(v) h(n) = x(n) x(n)

={1,4, 1,0}

1 1
H(K) = Z[>< (k) ® X (k)] = 7 [24,-i16,0,j16] = {6, -j4, 0, j4}

(vi) c(n) = x(n) ®x(n)
={1,2,1,0} ©{1,2,1,0}={2,4,6,4}
C(k) = X(kK)X(k) = {16, -4, 0, -4}
(vii) s(n) = x(n) ®x(n) = {1, 4, 6, 4, 1, 0, 0}
S(k) = X(K) X(k) = {16, -2.35- j 10.28, -2.18 +j 1.05, 0.02 +j 0.03, 0.02 - j 0.03, -2.18 -
j1.05, -2.35 +j 10.28}

(viii) Z‘X(n)‘z =1+4+1+0=6
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1 2_E B
n Y [X(k) _4[16+4+4]_6
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X(H) = L X(MW," 0<K<N-1
- ﬂ-U%Vmﬂ+Hmvmﬂ}{Rdm“r)+Hm0N£S}
=:_ququwﬂr ;IMNMNmWWW+

i mxe)] Re(Wa' )+ 1m(WA" )Relx(nuy

> Direct evaluation of X(k) requires N ? complex multiplications and N(N-1) complex
additions.

2 o
> 4 N7 real multiplications
» {4(N-1) + 2} N = N(4N-2) real additions
The direct evaluation of DFT is basically inefficient because it does not use the symmetry

K+ k k
& periodicity properties W, - Wr\T & WNK+N = WI\T

5.1 DITFFT:
E_l ﬁ_l
2 2
X(K) = Z X(Zn)WNan N Z X(2n +1)W|\52n+1)k
n=0 =0
(even) (odd)
N E_l

=1

2 2

N 2nk

_ D (MW gk D X (MW
n=0 n=0

N
E—l —1

2 2
X (W, WK D X, (MW,
n=0 n=0

= Xe(k) + Wy Xo(k)
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Although k=0 to N-1, each of the sums are computed only for k=0 to N/2 -1, since Xe(k)

& Xo(k) are periodic in k with period N/2

N
K+— K
ForK =Nz W, ? :-WN

X(K) for K> N/2

N

K-
X(K) = Xe(k-N/2) -Wy 2 Xo(k-N/2)

N=8

X(2n) = Xe(n) ; X(2n+1) = Xo(N)
Xe(0) = x(0) Xo(0) = x(1)
Xe(1) = x(2) Xo(1) = X(3)
Xe(2) = x(4) Xo(2) = X(5)
Xe(3) = x(6) Xo(3) = X(7)

X(K) = Xe(k) + Wa' X0(K) k=0to3

- xe(k-4) - Wy Xo(k—=4) k=407
X(0) = Xe(0) + Wy Xo(0) : X(4) = Xe(0) - Wy’ Xo(0)
(1) = Xe(1) + Ws Xo(1) : X(5) = Xe(1) - Wg Xo(1)
X(2) = Xe(2) + Wy Xo(2) ; X(6) = Xe(2) - Wy Xo(2)

3
X(3) = Xe(3) + Wg Xo(3) : X(7) = Xe(3) - W, Xo(3)
X(0) & X(4) having same i/ps with opposite signs

He(0) He(0) + Wy Ho(0) = 3(0)

o) <~ Xe(0) - ) Ko(0)= X(a)
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Ye(0)

10)=10) Xi0)
11) = 12 ;zE Pt Xe(l) X)
12) = 1) - kele) X(2)
Ye(3)
x3) = () I A
y “‘0
Xo(0) ! 0‘
xf=x(ly ] %Wz ’
N i) / :
xd1)=x( 7 Pt 7
Lof2 -
WD) —— o g X4
P Yo(3) 06),
X(6)
X0

This %pt DFT can be expressed as combination of %pt DFT.

Xe(k) = Xee(k) + WN2k Xeo(k) k=0to %-1 (0 to 1)
2(k-) N N N

= Xee(k-V)- Wy * Xeo(k=7) k=7 051 (2103)

Xo(k) = Xoe(k) + Wy X00(K) k=0to %-1
!

= Xoe(k-%) - Wj(k_4) Xoo(k — %) k= % to % -1
For N=8
Xe(0) = Xee(0) + Wy Xeo(0) ; xee(0) = Xe(0) = X(0)
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Xe(1) = Xee(1) + Wy Xeo(1) ; xee(1) = xe(1) = X(2)
Xe(2) = Xee(0) - Wy Xeo(0) : Xeo(2) = Xe(2) = X(4)

Xe(3) = Xee(1) - Wy Xeo(l) ; Xeo(3) = Xe(3) = X(6)

Where Xee(k) is the 2 point DFT of even no. of x.(n) & Xeo(k) is the 2 point DFT of odd
no. of Xe(n)

Similarly, the sequence Xxo(n) can be divided in to even & odd numbered sequences as

Xoe(0) = Xo(0) = x(1)

Xoe(1) = Xo(2) = x(5)

Xo00(0) = Xo(1) = X(3)

Xoo(1) = Xo(3) = X(7)

Xo(0) = Xoe(0) + Wy’ X00(0) ;
Xo(1) = Xoe(1) + W82 Xoo(1) ;
X0(2) = X0e(0) - Wg’ X00(0) :

Xo(3) = Xoe(1) - Wy’ Xoo(1) :

Xoe(k) is the 2-pt DFT of even-numbered of X,(n)
Xoo(K) is the 2-pt DFT of odd-numbered of X,(n)
Xee(0) = Xee(0) + Xee(1) = Xe(0) + Xe(2) = x(0) + x(4)
Xee(1) = Xee(0) - Xee(1) = Xe(0) - Xe(2) = x(0) - x(4)
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tll)= 1) = () ——
xy(l) = 1 = 1) ——

xd0)= 1) = 1(l) ——
tll) = 10) = 1) ——

tol)= 1) =) ——
Tl 1) x0(2) = 2()) —

Yol = 212 2(3) ——
Xll) = 13)=1(T) ——

Leel)
Leell)

Leall)

Keall)

Ltal)

Laall)

&)

Xee(0) = Xee(0) + Xee(1) = Xe(0) + Xe(2) = x(0) + x(4)
Xee(l) = Xee(o) - Xee(l) = Xe(O) - Xe(2) = X(O) - X(4)
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mﬂ

X(0)

(1)

Py
w; s ." X(3)
‘ Xi4)
X(5)
X(6)
X(7)
No. of No. of Complex Speed
No. of | points N Multiplications Improvement Factor:
Stages Direct N? FFT N2
N
— Log,N
ﬂLogzN g ~0%
2
2 4 16 4 4
3 8 64 12 5.33
4 16 256 32 8
5 32 1024 80 12.8
6 64 4096 192 21.33
For N=8

No of stages given by= LogzN = Log,8 = 3.
No. of 2 i/p sets = 2(L09,N 1) = 4

Total No. of Complex additions using DITFFT is NLOQZN




=8*3=24
Each stage no. of butterflies in the stage= 2™% where q = stage no. and N=2"
Each butterfly operates on one pair of samples and involves two complex additions and
one complex multiplication. No. of butterflies in each stage N/2

DITFFT: ( different representation) (u can follow any one) ( both representations are

correct)
E7]. E{L
& 2
X(k) = ZX(Zn)WNan N ZX(ZI’] +1)WN(2n+1)k
n=0 n=0
E71 ﬁ_l

2 2
= Z Xe (n)W[\rj]k + W[\lj( Z Xo (n)Wl\rI]I;Z
n=0 2 n=0
4 pt DFT Xe(k) + Wy Xo(K) k=0toN/2-1= 0to 3
Xe(k—%) ~w XO(k—%) k=N/2toN-1=4t07
2 pt DFT Xe(k) = Xee(k) + wi* Xeo(k) k=0toN/4-1=0to 1

N
= Xee(k-N/4) - W, ¢ Xeo(k-N/4) k=N/4toN/2-1=2103
Xo(k) = Xoe(k) + w;:* Xoo(k) k=0toN/4-1=0to 1

N
= Xoe(k-N/4) - W, ¢ Xoo(k-N/4) k=N/4toN/2-1=2103

W2 =W}

N=8

X(0) = Xe(0) + W2 X0(0) ; X(4) = Xe(0) - W2 Xo(0)
X(1) = Xe(1) + W2 Xo(1) : X(5) = Xe(1) - W, Xo(1)
X(2) = Xe(2) + W2X0(2) ; X(6) = Xe(2) - W2 Xo(2)
X(3) = Xe(3) + W2 X0(3) ; X(7) = Xe(3) - W Xo(3)
X.(0) = Xee(0) + W Xeo(0) %.(2) = Xee(0) - Ws Xeo(0)
Xe(1) = Xee(1) + W2 Xeo(1) ; Xe(3) = Xee(1) - Wy~ Xeo(1)
X0(0) = X0e(0) + W, X00(0) : Xo(2) = Xoe(0) - Wy X00(0)
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Xo(1) = Xoe(1) + w; Xoo(1) ;

Xee(k) = D X(AMW™ _

Ny
4

0

Xee(0) = x(0)+x(4)
Xee(1) = x(0)-x(4)

1(0)

x4

x(E)

x(3)

x(3)

x(7)

x(0)
x(4)
x(2)

x(6)
X(1)

Hee(l)

W
Heoll

x(0)
x(2)
x(4)
x(6)
x(1)

)
Teo(1) Wsz

Loe(l)

Koo(0)

x(0)
x(1)
x(2)
X(3)
x(4)

1
n=0

Xo(3) = Xoe(1) - \Ns2 Xo00(1)

X(4n)W ™

¥e(0)

=x(0) + x(4) Wg

X(0)

x0)

84



X  x(3) x(5)
X(3) X(5) x(6)
X(7) X(7)  x(7)

Other way of representation

Heel( el

x(D) * (0)
1
100 Heel) He(1)
x4y - )
-1
WU
XEO(U‘:I A XE(E)
2 e

I‘ﬂg
e (3)
5 e #eol1)
1 e Hoe(0ly Ko(0) "

1
Xoe(1) /><><\
e . Kol 1)

2
Koo(0) / /
3e . ol .
- I‘ﬂg
W3
011 #ool1) ?
Te L XOI:B:I e X':?)
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5.2 DIFFFT:

| =

-1

N-1
XMWy, D x(m)Wy™

Ml\)

X(K) = —re o put n” = n+tN/2
2
_ D x(mW D x(n+ N/ 2)W MK
n=0 n=0
3 N, .
_ D XMW W2 D x(n+ N/ 2)W"
n=0 n=0
%_1
= 2Dy S WA
——1
k
X(2K) Z[X(”) X )]Wl\T /2
S
X(2k+1) = Z{[X(”) x(n+ — )] WN /2
Let f(n) = x(n) + x(n+N/2)
g(n) = { x(n) — x(n+N/2) }WI\T
= 31 + Z ML)
7t ! fin)
HrHD2) g =1{ =) - =D )} Wy
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N=8

f(0) = x(0) + x(4)

f(1) = x(1) + x(5)

f(2) = x(2) + x(6)

f(3) = x(3) + x(7)

0(0) = [x(0) - x(@)] Ws
0(1) = [x(1) - x(5)] We
0(2) = [x(2) - x©)] W’
9(3) = [x(3) - x(7)] We
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x()

x(1)

) w =
o ; )
\ )
W,
J )
v |
’ g0
0
gl
£(5)
g4
)]
g3
x(7)
Ny
L W
X (4K) :Z_;[ (n)+f(n+%)] N /4
%_1
k
X (4k+2) = Z_;[{f (n)-f(n+%)}wl\?/2]wl\:‘/4
N

N
4
N k
X (ak+1) = Z:; [9(n), g+ )]WNn/4

Ny

3 nk nk
X (4k+3) = Z_;[{g(n) : g(n+%)}WN 121 W /4

X(4k) = £(0) + £(2) + [ f(1) + f(3)] Wy <

2
X(4k+2) = £0) — £2) + £ [f1) — 13) ] We yWg'
X(0) = F(0) + f(2) + (1) + f(3)

Hpy
2

DET

—— (0)
I <)
I, (73

L X&)

Tet

DET

I— ()

—— X(3)
— X(3)

I
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X(4) =10) +1(2) - [ (1) + f(3) ]
2
X(2) = f(0) - f(2) + [f(2) - £(3)] Wa

X(6) = f(0) - f(2) - [ (1) - f3)] We

£O+ f@i B30

D
J )
K 1)- 12 g
X2
; _
()
Wy
. ‘ D
4

40414 [61)- 3] W,

x(3) o s

v
) 0 g +agd g )
4
1-70 414
x5 g+ gD 0
4 » 2(5)
g
n
(6 o X(3)
12414 0
42
X

(T

[l - &3] W

Find the IDFT using DIFFFT
X(K)={4, 1-j2.414, 0, 1-j0.414, 0, 1+j0.414, 0, 1+j2.414}
Out put 8x*(n) is in bit reversal order x(n) ={ 1,1,1,1,0,0,0,0}
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6.DIGITAL FILTER STRUCTURE

The difference equation

Np y
y(n) = k:_ZNF Ay x(n-k) + kZ; b, y(n-K)

Np
-k
a ’z
kZ;‘ ‘ PNF ¢ )z
Y A ZNe TC W
N T ol A <1 o@A-d )z
k=1 k=1

If b= 0 non recursive or all zero filter.
6.1 Direct Form — |

1. Easily implemented using computer program.
2. Does not make most efficient use of memory = M+Np+Ng delay elements.
6.2 Direct form-I1
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|
|
!
L
[z] \
=(n) al + + vin)

o =

(]

<7 =

b2 laz
(7] |

] =

bHp l_Z_j_I alp

]

Smaller no. of delay elements = Max of (M, Np) + N
Disadvantages of D-1 & D-IlI
1. They lack hardware flexibility, in that, filters of different orders, having different no.
of multipliers and delay elements.
2. Sensitivity of co-efficient to quantization effects that occur when using finite-precision
arithmetic.
6.3 Cascade Combination of second-order section (CSOS)
y(n) = x(n) + a1 X(n-1) + a2 x(n-2) + by y(n-1) + b, y(n-2)
1+a,Z* +a,27?

H(2) =

1-bZ*-b,Z7?
%(1) 1 ¥(n)
—— > )
+

A\
= ™~
b‘ﬁ “al

7]
<] D§2

b2
Ex:
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2
z 5 5_, Z7 2y 2z1,%0 0 L
+ -2+ 3{ 4 n.

7+7 -
3 12 12 12
H(z) = z+ z7? ) 27,z
-~ + 5 T2
2 4 2 ’

— _1 _2 a _2
1- Zi + Z— - Zi ’ Zi
2 4 ; )
1 1 *
" _Db_@ “ (3} +@ o
¥
J \ - /
i I
\—Dm ™
]
<
1M
EX:
[Z+Z*1+Zfz] [1+Z_2+Z_3]

Jadl ) FE) HER) B EA! FEA) RER)

L l0.65-0452 + 72|45+ 2]

© R

L45+2 ] 0650452 +27]

=7 -1 B -
{1+22} 1_27_27

143 "

92



6.4 Parallel Combination of Second Order Section (PSOS)

EXx:
-3
2z 5 5, 7° 7|1, 971,572, 72
PASTRETY AR {3+12 127 T
H(Z) = Zfl Zfz = Z—l Z—Z
-5 +5 1-= +5
2 4 2 4
zt 7272z 5 1 5 -1
1-——+ S L S R
2 4 12 12 3 12 3 3
z*® z* 7
12 6 3
- + -
z* 27 1
12 12 3
727 7727t 7
J— +_
12 6 3
5 7
_Z_l_|__
4 3
-~ ;5T
2t 3%y
H(Z) = Z -2+ 3 + . 72
1_Z + —
i 2 4 |
173
() L=
o szz b3 - i)
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Ex:

z+27+27] _
H(z) = {Hzl}{l_ 71 }{H Zl:| obtain PSOS
2 4 8
rztfh+2z7] A, B _ ¢C
w5 s e R R
A=83 B=10 C =-35/3

@

9
P

Mn
®

=(n) .

10 ¥(n)

6.5 Jury — Stability Criterion

N(2)
1= ()

N
N—i
D(Z) = Zb'z = bo ZN +by ZN1 4 b, N2+ bn-1 Zt + bn
i=0

ROWS | COEFFICIENTS

1 bo by ....... bn

2 by b ...l bo

3 Co Ci....... Cn-1
4 Cn1 Cn2 ....... Co
5 do di ....... dn-2
6 dve  dns ... do
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2N-3 o Il )

b, by
Ci= bN bi 1=0,1,...N-1
Co CN—l—i
di = Cys C. 1=0,1,...N-2
. D(1)>0
i. (DND(-1)>0
i ol >[ou] (o> [ena| Jdo>[dws| [[>]r
EXx:
Z4
H(Z) = 753 3 2 D(z) = 42° +3Z2°+2Z°+Z +1
A2 +32°+22°+7Z +1
1 4 3 2 11
2 1 1 2 34
3 15 11 6 1
4 1 6 11 15
5 224 159 79
D(1) = 4+3+2+1+1 =11 >0, (-1)* D(-1) =3 >0

b >[by] [c.|>les] |do|>|dy]  stavle.
EX:

) 1 Y4 |
H(z) = 1_22_1_12_2 = 17777 3 Ans: Unstable
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Non Recursive filters

Recursive filters

0

Yy = 3 ax(nk)

k=-o0

for causal system
=Y ax(n-k)
k=0
For causal i/p sequence

y(n) = > akx(n-k)

k=0
It gives FIR o/p. All zero filter.
Always stable.

N M

ym =Y ax-k)— Y bey(n-k)
k —Nf k=1

for causal system
N M

ym =Y acxnk) - biy(n-k)
ko0 k=1

It gives IIR o/p but not always.
Ex: y(n) = x(n) — x(n-3) + y(n-1)
Zplakz‘k

General TF: H(z) = “———

1->bz™"
k=1

bk = 0 for Non Recursive

Nf= 0 for causal system

FIR filters

IR filters

1. Linear phase no phase distortion.

Linear phase, phase distortion.

2. Used in speech processing, data

transmission & correlation processing

Graphic equalizers for digital audio,

tone generators filters for digital

telephone

3. Realized non recursively.

Realized recursively.

4. stable

Stable or unstable.
H(n) =a" u(n) a<l1 stable

=0 a>1 unstable

5. filter order is more

Less

6. more co-efficient storage

Less storage

7. Quantization noise due to finite

precision arithmetic can Dbe made

negligible

Quantization noise

8. Co-efficient accuracy problem is

More
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less severe

9. used in multirate DSP (variable

sampling rate)
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7. IRFILTER DESIGN
> Butterworth, chebyshev & elliptic techniques.

» Impulse invariance and bilinear transformation methods are used for translating s-
plane singularities of analog filter to z-plane.

» Frequency transformations are employed to convert LP digital filter design into HP,
BP and BR digital filters.

» All pass filters are employed to alter only the phase response of IIR digital filter to
approximate a linear phase response over the pass band.

The system function = H(s)

The frequency transfer function = H(j Q) = H(s) / s=jQ

The power transfer function = |H(jQ)|2= H(jQ) H*(jQ) = H(s) H(-s) / s=jQ

To obtain the stable system, the polse that lie in the left half of the s-plane are assigned to
H(s).

/.1 BUTTERWORTH FILTER DESIGN

1
The butterworth LP filter of order N is defined as Hg(s) Hg(-s) = ¢
1+ (j

Q.
Where s = jQ,
Ha () :% or  |Hu(j0.) db=-3dB ‘s

It has 2N poles

2N
l+( _S ] =0
19,
2N
) =
19,

§M= -1 (jo.)*

s
. j= T
iz 2N ; iz2N
=e!"(e2Q,)" =N eir g2 gitnr

- j”(1+N+2m]
SN=0 e
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) (1+N+2mj
1= 2N
Sm=Q, €

Ex: for N=3

. (4+2m) 27 Az 5z 2w Iz
iz = — i

e’ 6 =’ ein e’ o' e o3 =1200 180° 240° 300°, 360°, 60°

L. 1
_ Vo(s)  cs 1
Vie_____/AMA . o(s) _ _
Vis) p, 1 1+RCS
CS
1 s A S
T 1+ (QJ
1+
C Qc
L L ]
jﬂ
190
&0

Poles that are let half plane are belongs to desired system function.
: 1

He(JQ) = — ¢

1+( Q J
QC

For a large Q, magnitude response decreases as Q™, indicating the LP nature of this
filter.

|H B (jQ)| B = 10|Oglo|H B (JQ)|2

=-10 Ioglo(1+[§) )

c
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As Qw0
=-20 N log1o Q2
=-20 N dB/ Decade = -6 N dB/Octane
As N increases, the magnitude response approaches that of ideal LP filter.

The value of N is determined by Pass & stop band specifications.

€]
0
-3
| =1 =-6& dB/Dct
|
-20 i
i =3 =-18 dB/Ort
~10dB i
' =5 = 30 dB/Oet
-60dB '
|
|
O O

Ex: Design Butterworth LPF for the following specifications.

Pass band:

I<H(jQdB <0 for 0<Q<1404zr  (Qp=14047)
Stop band:

H(jQ[dB<-60 for ©Q=>8268~ (Qs=82687)
If the Q. is given

. 2 _ Qs
IH(jQs)| = [1+(Q

c

jm]-l <10 (-60dB)

log(10° —1)

Qs
2log(—
o( QC)

Since Qis not given a guess must be made.
The specifications call for a drop of -59dB, In the frequency range from the edge of the

pass band (1404 ) to the edge of stop band (8268 z). The frequency difference is equal to

logy (@j = 2.56 octaves.
1404
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1 oct ---- - 6N dB

2.56 ------ ?
=> 2.56 X -6N dB =-59 dB’s
=~ =3.8
—2.56X6

There fore: N =4

2N
. Q
Now ‘H B (jQS)‘2 = [l+(Q—Sj ]-1 < 10°

2N
1+ £ 6
o) > 10

c

Qs*N > 106 2

-6

Qs 102> oc => 1470.37 > Q¢
Qc<1470.37
Let Qc=1470.3~

At this Qc it should satisfy pass band specifications.

H, (jop)| = [1+(%j %> 0.794 (= -1dB)

c

=0.59
This result is below the pass band specifications. Hence N=4 is not sufficient.
Let N=5

-6

Qc< Qs X 10N =2076.87

10

In the pass band |HB(jQp)|2: [1+(%j 11 =0.98

Since N=5

Qc=2076~

S;=-2076 7

S2.3= 20767 (cos (4x/5) +jsin(4r/5)) =2076 ptitad
+j108

Ss.5= 20767 (Cos (37/5) +j sin(3z/5)) = 2076 z €
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_ (20767) )
He(s) = [s+ 20767 ]|s? + 335975 + (20767)? [s? +12837s + (20767)? |

1. Magnitude response is smooth, and decreases monotonically as Q increases from 0 to

2. the magnitude response is maximally flat about © =0, in that all its derivatives up to

order N are equal to zero at Q=0

Ex: ©c=1, N=1
H (i) = (1+0?)?

The first derivative

d (2 -2Q
—H (@) =___ """ = Q=

The second derivative

d2

Y He ()" =-2 at =0

3. The phase response curve approaches #for large Q, where N is the no. of poles of

butterworth circle in the left side of s-plane.

Advantages:

1. easiest to design

2. used because of smoothness of magnitude response .
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Disadvantage:

Relatively large transition range between the pass band and stop band.

Other procedure

When Qc=1 Avs = AVO 2N
W
1+ j
WO
Avo
|HB(S)|2 =

R
1+(S_J

J
If nis even SN =1 = gk~

The 2N roots will be Sk= e’ 28 k=12,...2N
_ 0T e 1y
Sk =Cos(2k —1) ot jSin(2k —1) N

Therefore: [H,(s)| = T(S) = L

N/2

g7 (s* +2Cos6, s +1)
k=1

If N is odd

G2n =] = gi%=

Sk = glz/N k=0,1,2....(2N-1)

T() = .

where 6 = k%

(N-1)/2
g (s*+2Cos6,s+1)

k=1

20 log|H (7T 4
dBE’s
0 ,—\-\
k1
k2
N o
Q1 o>

0 >20log|H(jQ)[>K1 for Q<1
20log|H (jQ)|< K2 for Q>Q2

where 6 = (2k -1~
k= ( )2N
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o\ u
10log|— X _|=K1 (—j =100 -1
1 (Qlj Qc
+ .
c
Q2" K
10log |— > |=K2 (—j 100 -1
1 (92] Qc
+ R
L Qc
, -k
n 10 _
Dividing (ﬂj _10% -1
Q2 -
10 -1
k1
101 -1
0910~ —
10 -1
n= Ql
Zlog“’(gzj

choosing this value for n, results in two different selections for Q_. If we wish to satisfy
our requirement at Q1 exactly and do better than our req. at Q2, we use

9 ¢)
Q=—" - or Q,=—-—*%— for better req at Q2

: K N\ k2 N\an
[10 b _1j (10 v _1]
End

7.2 CHEBYSHEV FILTER DESIGN
-1
Defined as He(S) He(-S) = {u yc(&j ]

w« = measure of allowable deviation in the pass band.

Cn(X) = Cos(NCos™(x)) is the Nth order polynomial.

Let x = Cosé
Cn(x) = Cos(N )
Co(X) =1

Ci1(x) = Cos =x
Ca(x) = Cos20 =2 Cos?0-1 = 2x3-1
C3(X) = Cos30 =4 Cos®9-3 Coso = 4x3-3x  etc..
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N Cn(X)
0 1
1 X
2 2x%-1
3 4x3-3x
4 8x*- 8x2 +1
HGof )
1 N =odd 11 1 = even
1 1
144° Ty
b o

Two features of Chebyshev poly are important for the filter design
1. [Cy(|<1  for |x<1
(L+2)" dH (j)P<1  for 0<Q<ap

Transfer function lies in the range (1+42)" <H, (jQ)’<1 for 0<Q<Qp

Whereas the frequency value important for the design of the Butterworth filter was the
Qc, the relevant frequency for the Chebyshev filter is the edge of pass band Qp.

2. [ >>1|Cy (n)| Increases as the Nth power of x. this indicates that for Q >> Qp, the
magnitude response decreases as Q N, or -6N dB Octane. This is identical to Butterworth

filter.

Now the ellipse is defined by major & minor axis.

Define p= u™* +1+u7

1 -1
b
Minor r = Qp Y

P
pN+pNj

Major R = Qp [# N = Order of filter.

Sp=rCosf+j R Sing
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Ex:

Pass band:

1<|H(jQ)'dB <0 for 0<Q<14047
Stop band:

H(jQ) dB < -60 for 0 >82687

Value of wis determined from the pass band

10 logt+4?)" >-1dB -1dB = 0.794
u< oo -1} = 0.508

u =0.508

Value of N is determined from stop band inequality

a1
|H c (JQSXZ = [1+ ,uZCf, (ﬁ} ] <10

1
oo
Since 2= _59 Cn(5.9) > o - 117~ 1960
Qp 7
Evaluating

Cs3(5.9) = 804 C4(5.9) = 9416 therefore N = 4 is sufficient.

Since this last inequality is easily satisfied with N=4 the value of x can be reduced to as
small as 0.11, to decrease pass band ripple while satisfying the stop band. The value x=0.4
provides a margin in both the pass band and stop band. We proceed with the design with x

=0.508 to show the 1dB ripple in the pass band.
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Axes of Ellipse:
p=0.508" + (1+0.5082)Y2 = 4.17

-1

B 1
4174 +4.174} =7027(1.43+0.67) =14947

R = 1404~

1 -1

4174 — 4.174} =512

7t 5Srx

oles locations : +—,=—
P 8 8

Sio= 5127zc:os%”i j14947z5in%’Z - — 4731 + j5727 = 74272

Sy.= 5127C0s >+ jlagasin®F - ~1967 + [13807 =139476"

(742713947 )
[S? —S*2*7422C0s(130) + (7427)] [S? — S *2*13947C0s(98) +13947°]

Hc(S) =

e Chebyshev filter poles are closer to the jQ axis, therefore filter response exhibits a
ripple in the pass band. There is a peak in the pass band for each pole in the filter, located
approximately at the ordinate value of the pole.

e Exhibits a smaller transition region to reach the desired attenuation in the stop band,
when compared to Butterworth filter.

e Phase response is similar.

e Because of proximity of Chebyshev filter poles to jQ axis, small errors in their
locations, caused by numerical round off in the computations, can results in significant
changes in the magnitude response. Choosing the smaller value of . will provide some
margin for keeping the ripples within the pass band specification. However, too small a
value for x may require an increase in the filter order.

e It is reasonable to expect that if relevant zeros were included in the system function, a
lower order filter can be found to satisfy the specification. These relevant zeros could serve
to achieve additional attenuation in the stop band. The elliptic filter does exactly this.

7.3 IMPULSE INVARIANCE METHOD
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H@) = S h(nz™

H) atz= €57y = 2 h(me ™™

rel =gldT) = g el =T > w=0QT

1
N

LetSi = o+ jQ=>  Z1= eTel

. 2 OT+i :
So=oc+ j(Q—i-?) => Z, = eTelfT+i2r _ goTgiar

k4

e 5 7 7]
4, 177

r

52

If the real part is same, imaginary part is differ by integral multiple of 2 % this is the

biggest disadvantage of Impulse Invariance method.

S+a S+a
Let HA(S) = =
A(5) (s+a) +b>  (s+a+jb)+(s+a— jb)
ha(t) = e Cosbt fort>0 S1 = -a-jb
=0 otherwise Sy = -atjb

h (nTs) = e"™Cos(bnTs) forn>0

1-e"Cos(bTs)Z ™ _ 1-e*™Cos(bTs)Z ™
—2e*"Cos(bTs)Z * +2Z 72 (1—g @7 1)1 g (a7 1)

H(z) = I

The pole located at s=p is transformed into a pole in the Z-plane at Z = "™, however, the
finite zero located in the s-plane at s= -a was not converted into a zero in the z-plane at Z =

e ", although the zero at s=« was placed at z=0.
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yin)

=0
@
&
T
Z
<] =
- L~
2 & “CosbTs S ¢ ““CosbTs

Desing a Chebyshev LPF using Impulse-Invariance Method.

S12=-473~x ij 5727
S34=-1967 +] 1380~

[The freq response for analog filter we plotted over freq range 0 to 10000 ~. To set the

discrete-time freq range (0, T”—S), therefore Ts = 10

Z1 . eS“Ts = o 0148:j0.179 = () §FD @ £i102

Za4= ST = g-0061:j0433— () Q4 @ *i248

k

H(z) =

k

 (1-1.69Z ' +0.743Z ?)(1-1.707Z " +0.88Z %)

O}

(1-2*0.862C0s10.2Z * +0.862°Z )(1-2*0.94C0s24.8Z * +0.94°Z %)

¥in) .

2@ [~ oD

k £+ 3
k (]
e

1.6%

-0.7743

<

(2]

L

¥

17707

-0.88

Methods to convert analog filters into Digital filters:

1. By approximation of derivatives

d_x/ t=nTs = X(nTs) —x(nTs—Ts)
dt Ts
-1
g = 1-7
Ts

L (]
<

[z

Al

<
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x(t) y(t) = %f—

#nTs) — winTs-Ts)
Ts

z(nTs) B yin) =
—.. 1

Or

Using forward-difference mapping based on first order approximation Z = e*™ = 1+STs

Z-1
S

Using backward- difference mapping is based on first order approximation

Zt=e""=1-STs

_ =71
S = Z-1_1-7
ZTs Ts
d’x d [ dx
t=nTs = —| — |/t =nTs
et gl |
x(nTs) —x(nTs—Ts) x(nTs—Ts) —x(nTs - 2Ts)
— Ts Ts
Ts
_  X(nTs)—2x(nTs—Ts) + x(nTs — 2Ts)
Ts?
o 1-227+z7_(1-77 i
Ts® Ts

1K
Therefore Sk = {1}2 }

1-z27

Therefore H(z) = Ha(S) /sz{ } using backward difference

s 1 _ 0.5 4 05(L+STS)
1-STs 1-STs
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1 _ 1 JQTs
: - rraz T 272
1-jQTs  1+Q°Ts® 1+Q°Ts

_ 0.5(1+STs)
(1—STs)

Z-05

z—-0.5=0.5is mapped into a circle of radius 0.5, centered at Z=0.5

10

@

Using Forward-difference

Z-plane

s=271 7-145Ts
Ts

utjv=1+( o+ j)Ts

if =0 u=1 and jQaxis maps to Z=1

If >0, then u>1, the RHS-plane maps to right of z=1.
If <0, then u<l, the LHS-plane maps to left of z=1.
The stable analog filter may be unstable digital filter.

Em

S-plane

o z

~ g

i lan

I

7.4 Bilinear Transformation
e Provides a non linear one to one mapping of the frequency points on the jw axis in s-

plane to those on the unit circle in the z-plane.
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e This procedure also allows us to implement digital HP filters from their analog

counter parts.
272-1_21-7271

{Using trapezoidal rule y(n)=y(n-1)+0.5T[x(n)+x(n-1)]
H(Z2)=2(zZ-1) / [Ts(Z+1)] }

2 72-1

To find H(z), each occurrence of S in Ha(S) is replaced by Ts7 11

STs

—+1
- 2
And Z= 5TS
22
2
2 vz LT
w 2 2
° I T 12 5
T jtan1-Q—>
o5 LQZ(S +1J e
2
. 1 TS
. j2tan” Q— OTs
e =e © o we2tant =

The entire jQ axis in the s-plane -0 <jQ <« maps exactly once onto the unit circle -
r<w<zsuch that there is a one to one correspondence between the continuous-time and
discrete time frequency points. It is this one to one mapping that allows analog HPF to be

implemented in digital filter form.

W
x

J O
-®
As in the impulse invariance method, the left half of s-plane maps on to the inside of the

unit circle in the z-plane and the right half of s-plane maps onto the outside.
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. .. 2
In Inverse relationship is Q:Etan(gj

3
W [W_W J
P 2 8
For smaller value of frequency Q=2 — 2 = 2 - W
C W Ts w Ts
0s—_ 1-—+
4
w=A3T
K
w =2 tan €2 Ts
2
T
—1
]

-

(B.W of higher freq pass band will tend to reduce disproportionately)

The mapping is =linear for small Qand w. For larger freq values, the non linear
compression that occurs in the mapping of Qto w is more apparent. This compression
causes the transfer function at the high Q freq to be highly distorted when it is translated to
the w-domain.

Prewarping Procedure:

When the desired magnitude response is piece wise constant over frequency, this
compression can be compensated by introducing a suitable prescaling or prewarping to the

Qfreq scale. Q scale is converted into Q* scale.

Q* = Etan(Q_TSj
Ts 2

We now derive the rule by which the poles are mapped from the s-plane to the z-plane.

Let HA(S) = S—LSp S:Sp
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H(2) = : 1 _ Ts+27Y)

1
(1_2 j—Sp (Z—Sst)(l— 2+ 5pTs zlj

1+27 2—3pTs

Ts

A pole at S=Sy in the s-plane gets mapped into a zero at z= -1 and a pole at Z =

EX:

Chebyshev LPF design using the Bilinear Transformation
Pass band:

-1<|H(jQ)dB <0 for  0<Q <1404z =4411 rad

Stop band:

IH(jQ)| dB < -60 for 0 >8268zrad/sec =25975 rad/s
Let the Ts = 10 sec

Prewarping values are

Qp* = T—Zstan(QTTSj = 2*10* tan(0.0702 ) = 4484 rad/sec
_ 2 QTs) _ 4 _
And Q* = Etan — ] = 2*10" tan(0.4134 ) = 71690 rad/sec

The modified specifications are

Pass band:

-I<|H(jO¥)|dB <0 for  0<Q*<4484 rad/s
Stop band:

IH(jQ*)| dB < -60 for Q*>71690rad/sec

Value of 4 is determined from the pass band ripple  10log (L+4?) ~ >-1dB

4 =0.508

Value of N: is determined from
-1
. Qs*
H Q * 2: 1 2C2 ne <10_6
| c(J S ) { TH N(Qp*j]

Qs*

Since 16
Qp*

2+SpTs
2-SpTs
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Cr?(16) < {@062 3
7

(10° 1)

~— | =1969
(0.508)? |

Cn(16) < {

C5(16) = 16301
N = 3 is sufficient
Using Impulse Invariance method a value of N=4 was required.
p=4.17
ER
pt+p"

1 1
Major R = oQp* T %84(4.173%17 3}:5001

1
r= &284[4 173 -4.17 3}22216

Since there are three poles, the angles are ;z&%”

S1=rcos@ +jRsing =-2216

S23=2216 Cos?ﬁ +j 5001 Sin?” = -1108+j 4331 = 4470 e*14

* 10
He(s) = 4?3 10 :
(s+2216)(S? +2223s + 4470%)
Pole Mapping
At 8231

2+(-2216*10)
2—(-2216*10")

In the Z-plane there is zero at Z = -1 and pole at Z = =0.801

S2,3 = there are two zeros at Z=-1

_ 2+(-1108+ j4331)*10°
2—(-1108+ j4331)*10°*

=0.801+ j0.373=0.9e*1%*

1+Z271 14221 +2772

H(z) = 4.29 * 103 _ - -
1-0.8012~1-1.638Z " +0.81Z

Pole Mapping Rules:
H,(z) = 1-CZ! zero at Z=C and pole at Z =0
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Hp(z) = —1 pole ar Z=d and zero at z=0

C and d can be complex-valued number.

Pole Mapping for Low-Pass to Low Pass Filters

Applying low pass to low pass transformation to H;(z) « we get

a+C —
. e

l_(

1+ ca
Hiz(Z 1C = (1+ca

2(2) = 1-¢4- aZ = (rea) — = 7

The low pass zero at z=c is transformed into a zero at z=C1 where C1 = (

And pole at z=0 is Z=¢«
Similarly,
1-aZt

1+ da){l—(la:az jz—l}

Pole at z=d => Z= (‘de
1+od

HLP(Z)=

Zeroatz=0=>7z=

(+zJar2z 1 +222)
(L-0.6227*J1-1.072 7 +0.674272)

H(z) =K

[1+ (~1)(-0.356) ]

~ {1+ 0.801*-0.356)(1+ (0.819+ j0.373)(—0.356))(L+ (0.819 — j0.373)(0.356))

a+C
l+ca

=0.029
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8.FIR Filters

Phase Delay: 7, o)
Group Delay: ¢ ddigg)

If z,= z,=constant and independent of frequency are called as constant time delay or
linear phase filters.
0(Q) = o — 10

r = @ _r Changes with frequency

r,= - r=constant.

8.1 Type 1 Sequence

A Hiw)
] | l | : o
4 n _gln x 0 x ox

Ddd length, even symmetry

Center of Symmetry M= NT_l = integer value

N—3
H(eJQT) Z h(n)e—JQnT + h( ) JﬂT( ) + Z(N N{r)lh(n)e—jnnT

2
Let N-1-n =n

N—3

Z(N /2 p(n)e—jonT 4 h(%) —jorh | Z h(N — 1 —n)e JoW-1-n)T

N—3

Z(N 3)/2 h(n)e /T 4 h(%) JQT(—) "'Z h(n) —jQ(N-1-n)T
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e_]Q_T[ Z(N 3)/2 h(n)ejQT[Nz_ + h(—) + Z;_o) h(n)e_jﬂ(%‘"”

H(eT) = %5 T 30002 2h()cosQT (2 — n) +h(ED |

N-3

H(w) = h(M)+2ih(n)COSQT(n ~ M) [gioMT

5

Amplitude spectrum is even symmetric about w=0 & » & both H(0) & H(z) can be non
zero.

8.2 Type 2 Sequence

4 Hiw)

11 AL

| [ W
+ 11 _23- U R’\-/z—ﬂ'
I =Ewen length, even symmetry

h(n) = h(N-1-n)

Center of Symmetry M—T = half-integer value

~ —jonT
H(e*") = ;h(n)e :

Ny
2

_ Zh(n)e jonT Zh(n)e an

T2
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Let N-1-n=m

N
| 0

2 i .
- Zh(n)e—JQnT N Zh(N _1_m)e—jQT(N—l—m)
n=0

m=ﬁ—1
2

But h(N-1-m) = h(m)

N, S|

2 . 2 .
__ Zh(n)eijnT +Zh(m)eijT(Nflfm)
n=0 m=0

Na N-1 N

2 - ijQT(;j 2t _ sjor( N2
— Zh(n)e_JQnTe 2 +Zh(m)67JQT(Nflfn)e J [ 2 j

n=0 n=0

N . QT . QT

E_l 5 T(Ej e_J(QnT_T(N_l) +e_J(QT(N_1_n)_T(N_1)
= > 2h(n)e 2

n=0 2

= Zz_:Zh(n)ejm[Z_j cos QT(n —~ (NT_lD

_jor( N2 2t N -1
—e [ 2 jZZh(n)cosQT(n—(TD ----Magnitude

n=0

7= (NT_le Linear Phase

Ny

H(w) = 222: h(n)CosQT (n— M) e M7

The Amplitude spectrum is even symmetric about w=0 & odd symmetric about w=r &

both H( ) is always zero for type 1 & 2 : Constant phase delay and group delay.

8.3 Type 3 Sequence
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N =044, Odd symmetry

M= NT_l = integer value

N-3

H(W) :j ZnZ:;h(n)SanT(M _n) e*jQMT

p Hiwr)

It shows generalized linear phase of %—QMT and constant group delay of M. The

Amplitude spectrum is odd symmetric about w=0 & w=z and H(0) & H( ) are always zero.

(Generalized means 6(©2) may jump of ~ at Q=0 if H(e!") is imaginary.

8.4 Type 4 Sequence

M =even, Odd symmetry

Ny

H(W) :j zjzz(;h(n)S”']QT(M _n) e—jQMT

4 Hiw)
/\I/\ .
0 " ox

Generalized linear phase and constant group delay of M. The Amplitude spectrum is odd

symmetric about w=0 & even symmetric about w=~ and H(0)=0 always.
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8.5 Poles & Zeros of linear phase sequences:

The poles of any finite-length sequence must lie at z=0. The zeros of linear phase

sequence must occur in conjugate reciprocal pairs. Real zeros at z=1 or z=-1 need not be

paired (they form their own reciprocals), but all other real zeros must be paired with their

reciprocals. Complex zeros on the unit circle must be paired with their conjugate (that form

their reciprocals) and complex zeros anywhere else must occur in conjugate reciprocal

quadruples. To identify the type of sequence from its pole-zero plot, all we need to do is

check for the presence of zeros at z= + and count their number. A type-2 seq must have an

odd number of zeros at z=-1, a type-3 seq must have an odd number of zeros at z=-1 and

z=1, and type-4 seq must have an odd number of zeros at z=1. The no. of other zeros if

present (at z=1 for type=1 and type-2 or z=-1 for type-1 or type-4) must be even.

T-1

[
z Q&)% 1

O Must be odd if present

@ Mlust be even if present

T-3

T-2

~

-
-

T-4

AR
L

N

N
/

)/{:]
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Prove:

HZ) = S¥-d h(m)Z ™

H(Z)at z=z0 = H(Zo)= ¥N-d h(n) Zy™
=h(0) + h(1) Zg" ++ h(2) Z5” +

For linear phase h(N-1-n)=h(n)
h(N-1) + h(N-2) Zy1 ++ h(N-2) Zg2 +
Z,""Ph(0) + h(1) Z§ ++ h(2) Z§ +
;" V= Sz () (Zg ) =0
Therefore H(Zo)= H(Zy1)=0

+h(N-1) Z; V=0

+h(0) Z, " V=0

+h(N-1) 2" M1=0

If Zo is a zero of H(Z), then Zy! is also a zero

1 1f Z1 =-1then Z7! = Z1, then the zero lie at Z1=-1

This group contains only one zero on the unit circle

2) If Z2 is real zero with |Z2| <1 then Z31 is also a real zero and there are two zeros

in this group

3) If Zs is a comple zero with |Zs| =1 then Z31 = Z} and there are two zeros in this

group

4) If Z4 is a complex zero with |Z4| #1 then this group contain four zeros Zs, Z;1 =

Zy . (Z3)*

Z3
Z1

(Z3)*

Z3' =73
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FIR Filters

8.6 Fourier series Method

1. Frequency response of a discrete-time filter is a periodi function with period Qs
(sampling freq).

2. From the F.S analysis we know that any periodic function can be expressed as a linear
combination of complex exponentials.

Therefore desired fregency response of a discrete time filter can be represented by F.S as

QT c —jQnT
H(e™ )= Zh(n)e T = sampling period

N=—o0
The F.S co-efficient or impulse response samples of filter can be obtained using

1 IQSIZ H(ejQT)eanTdQ

JOEFN

clearly if we wish to realize this filter with impulse response h(n), then it must have finite

-Qs/2

no. of co-efficient, which is equivalent to truncating the infinite expansion of H(e*"), which

leads to approximation of H(e*"), which IS denoted by
- M -
Hl(eJQT) _ Zh(n)e_JQnT
n=—M '
N -1

We choose M= 5 in order to keep ‘N’ no of samples in h(n).

M
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However, this filter can’t be physically realizable due to the presence of +ve powers of Z,

means that the filter must produce an output that is advanced in time with respect to the i/p.

This difficulty can be overcome by introducing a delay Mz% samples.

M
Therefore H(z) = ZMHy(2) = ZM ;ﬂh(n)z o

H(z) = h(-M)Z° + h(-M+1) Z +.... +h(M) Z'M
Let bi = h(i-M) i=0 to 2M

2M

H(z) = Zbiz R be the transfer function of discrete filter that is physically realizable.
i=0

Properties:

1. N=2M+1, impulse response co-eff, bi = 0 to 2M.

2. h(n) is symmetric about by

Ex: M=4

h(-3)
<1 ’»

R0 )=hb
h(-13 h(1)

h(2)

h(2)
hi)
LT

h(-23

3. The duration of impulse response is Ti = 2MT

4. Its magnitude and time delay function can be found in the following way

H (ejQT) — e—jQMT Hl(ejQT)

H(e)|=|H, (")

This implies that magnitude response of the filter we have desired approximates the

desire magnitude response. The time delay of H(e!V) is a constant M. thus sinusoids of

different frequencies are delayed by the same amount as they are processed by the filter, we
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have designed. Consequently, this is a linear phase
introduce phase distortion.

EX:

Design a LPF (FIR) filter with frequency response

H(e*") =1 for |O]<Qc

=0 for QC<Q<%

1 eoc .
= jonT
= g et 09
i_[QCCos(QnT)dQ
Qs
2 SinQcnT
~Qs nT
] 1 .
_ 1 SInQAenT = —SInQenT
27Fsn. nz
Fs
bi = h(i-M)

2M y
H(z) = iZ:o:biZ

Ex:

filter, which means that it does not

A H(EjﬂT;'

1
o -0 | @ 0 o
7 5

He™)

1
| | .
1|r C g 1.|'.' w

weQT =Byl
2 " 2 Fs

Design LPF that approximate following freq response.

HF) =1 0<F<1000Hz
=0 elsewhere 1000<F<Fs/2

When the sampling frequency is 8000 SPS. The impulse response duration is to be

limited to 2.5ms
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Ti=2MT
25%10°

M = =10 N=21
"800
)= g [ode™" 00
g J-Qc
_ L emmome oL [Ferengr - 2 [ Cos(am)oF
27Z-Fs R FS —Fc FS 0

_ iSinZﬂFch = iSin(0.25n7z)
nz nz

OR
we oT s 27*1000% = =%

- - 8000 4

Fy JW
=1 W< HE)
1
= 0 else where
| —
-7 _F x k4 w
4 4

— |4 1e™dw__~_g;j
> I_Z ~—Sin(0.25n7)

¥4
h(0) = 0.25 h(6) = -0.05305
h(1) = 0.22508 h(7) = -0.03215
h(2) = 0.15915 h(8) =0
h(3) = 0.07503 h(9) = 0.02501
h(4) =0 h(10) = 0.03183
h(5) = -0.04502
bi = h(i-10)

20 y
H(z) = ébiz
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FIR HPF

h(n) = é[ [ 1e™do+ L‘:’zejﬂﬂdg}

Qs/2

H(='CT)
Q. o 3 Lo 38 o ©
2 2
1 | e Q e’ Qs/2
= Q_S JnT ‘—QS/Z jnT ‘—Qc
'%nT J%n
1 e jQenT e 2 +e 2 eJanT
- 0s jnT
: 0
-21 echnT _e—chnT e’;”T _e_JTSnT
- ; + y
- QsnT 2] 2]
.2 SinQ nT + Sin .07
27FsnT 2
1. _ 1.
= “[sinQ.nT+Sinmn] = —[sin QnT]
nrzx Nz
FIR BPF

2 (™eosnQT  dO 1['9 T —sin Q,nT]
h(n)zg—sjgl cosn =ES|n NT —sinQn

EX:
Desing a BPF for H(f) =1 160<F <200Hz

=0 else where

Fs = 800SPS
Ti=20 ms
o
M= L _207107 g N =17
T .1
800
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sin 0.5n7z —sin 0.4nx

h(n) = L [Sin24F,nT - Sin2z,nT] =

1¥/4 Nz
h(0) =0.1 h(4) = 0.07568
h(1) = 0.01558 h(5) = 0.06366

h(2) =-0.09355  h(6) = -0.05046
h(3)=-0.04374  h(7)=-0.07220  h(8) = 0.02338

H(z) = 'lze’lbiZ‘i

bi = h(i-8) h(-n) = h(n)
8.7 WINDOWING
Disadvantage of F.S is abrupt truncation of FS expansion of the freq response. This

truncation result in a poor convergence of the series.

h(n) .
Hi(z %)
1
O TTTT T = —We C W
h(a) "
THE™
\ |
w 1 [N
‘ y ‘ . ~J 3, W U5

The abrupt truncation of infinite series is equivalent to multiplying it with the rectangular
sequence.
Wg(n) =1 <M
=0 else where
h(n) = h(n)W (n)
H(e™)=H ") *W,(e")
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. ij” H (e )W, ('™ )d6
27 7

WRr(e"™) => FT of Rectangular Window

N-1 wWN

T ™ Nsa?
W) = Zl.e“wndw ) 2 v
T nz_[Nz‘lj B Sinvzv - Sa2

Wr (™)
VANV A 4 SN e
VA ¥ w
B

~ TV R e

» Main lobe width = %” & it can be reduced by increasing N, but area of side lobe will

be constant.

» For larger value of N, transition region can be reduced, but we will find overshoots &
undershoots on pass band and non zero response in stop band because of larger side lobes.
So these overshoots and leakage will not change significantly when rectangular window is
used. This result is known as Gibbs Phenomenon.

The desined window chts are

1. Small width of main lobe of the frequency response of the window containing as
much as of the total energy as possible.

2. Side lobes of the frequency response that decrease in energy as w tends to 7.

3. even function about n=0
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4. zero in the range |n|> N -1

Let us consider the effect of tapering the rectangular window sequence linearly from the
middle to the ends.
Triangular Window:

W, (n)=1—NZ|—T|1 |n|£M

=0 else where

In this side lobe level is smaller than that of rectangular window, being reduced from -13
to -25dB to the maximum. However, the main lobe width is now SW”. There is a trade off

between main lobe width and side lobe levels.

General raised cosine window is

27N N -1
W(n)= &+ (1—05)C03(m) for |n|sT

=0 else where
If «=0.5 Hanning Window
If «=0.54 Hamming Window

2m 4m
Wg(n) = 0.42 + 0.5 COS( N 1) + 008(:03(@) Blackman Window

Kaiser Window

N-1

W, (n) = for |n[<

= else where

Bis constant that specifies a freq response trade off between the peak height of the side
lobe ripples and the width or energy of main lobe and lo(x) is the zeroth order modified
Bessel function of the first kind. lo(x) can be computed from its power series expansion

given by
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2

= 1(x)
Io(x):1+z E[Ej

k=1

0.25x* (0.25x*f (0.25%*)

=1+ 2 +——————+  +...
W@y @y
Window Peak amplitude Transition width Minimum stop
of side lobe dB of main lobe band deviation dB
Rectangular -13 L 21
N
Triangular -25 87 =o -25
N
Hanning -31 8z k=2 -44
N
Hamming -41 87 =2 -53
N
BlackMan -57 127 k=3 -74
N
Kaiser variable variable -

If we let K;,W; and K3,W, represent cutoff (pass band) * stop band requirements for the

digital filter, we can use the following steps in design procedure.

E1

K2 .
L1 Lz

1. Select the window type from table to be the one highest up one list such that the stop
band gain exceeds Kp.

2. Select no. of points in the windows function to satisfy the transition width for the type

of window used. If Wt is the transition width, we must have Wt = W,-W; > k.ZW”

where K depends on type of window used.
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K=1 for rectangular, k=2 triangular.....

27
W, =W,

Therefore N> K

If analog freq are given, it must be converted in to Digital usingw=QT
Ex:

Apply the Hamming Window to improve the low pass filter magnitude response ontained

in exl:

Wii(n) = 0.54 + 0.46 COS(%J for |n|< Nz‘l
=0 else where

N=2M+1=21
WH(0) = 1 Wh(6) = 0.39785
Wh(1) = 0.97749 Wh(7) = 0.26962
Wh(2) = 0.91215 Wh(8) = 0.16785
Wh(3) = 0.81038 Wh(9) = 0.10251
Wh(4) = 0.68215 WH(10) = 0.08
Wh(5) = 0.54

Next these window sequence values are multipled with coefficients h(n), obtained in ex1,
to obtain modified F.S Co eff h’(n).

h’(0) =0.25

h’(1) =0.22

h’(2) =0.14517

h’(3) =0.0608

h’(4) =0

h’(5) =0.02431

h’(6) =0.02111

h’(7) =-0.0086725

h’(8) =0

h’(9) =0.00256

h’(10) =0.00255
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H’(z) = %b'i z"

bi=h’(i-M) 0<i<20 h’(-n) = h’(n)
20Log H(p | 9B
H©)
’ o 134B
414B
-30 -30
-60 m/\ 60
Hamming 1K Fectangular 4 EHz

EX:

Find a suitable window and calculate the required order the filter to design a LP digital
filter to be used A/D-H(Z)-D/A structure that will have a -3dB cutoff of at 30 ~ rad/sec and
an attenuation of 50dB at 45~ rad/sec. the system will use a sampling rate of 100 samples
/sec

Sol:

The desired equivalent digital specifications are obtained as
. 1
Digital .....w, =w, =QcT = 3O7zm =037 k, >-3dB

1
W, =Q2T =457 —=0.45 <—
2 100 VA k2 <-50dB

1. to obtain a stop band attenuation of -50dB or more a Hamming window is shosen
since it has the smallest transition band.

2. the approximate no. of points needed to satisfy the transition band requirement (or the
order of the filter ) can be found for wl =0.3zrad &w2 = 0.45~rad, using Hamming
window (k=2), to be

2r 2.2
w, —w, 0.457-0.37

N >k =26.65

N = 27 is selected
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Kaiser window

> The attractive property of the Kaiser window is that the side lobe level and main lobe
width can be varied continuously by simple varying the parameter . Also as in other
window, the main lobe width can be adjusted by varying N.

» we can find out the order of Kaiser window, N and the Kaiser parameters to design
FIR filter with a pass band ripple equal to or less that Ap, a minimum stop band attenuation
equal to or greater than As, and a transition width Wt, using the following steps:

Step 1 : Choose § such that § = Min( &y, ds)

—0.05A 1
o, =10 s’ [ Prove A, = 20Ioglo%§p:>AS: —20log & ]
B 100.05Ap _1
p 100.05Ap 11
1
[ Prove A, = 20109, 1i§g

100-95Ap = 1+6
1-6

(1-5)1000% = 145
Therefore: solving above eq for §, we get

100.05Ap _1
o= 100.05Ap 11 ]

Step 2:
Calculate As using the shosen values

ASO= -20 Iog Io)
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HE)

Step 3:
Calculate the parameter g as follows for
B =0
= 0.5842(Aso -21)%4 + 0.07886(Aso -21)
= 0.1102(As-8.7)

for Ao <21 dB

for 21< Ay, <50 dB
for Asc>50 dB

Step 4:
Calculate D as follows
D =0.9222 for Aso <21 dB

- AS=79 for As >21 dB

14.36

Step 5:
Select the lowest odd value of N satisfying the inequality
N> QsamD 1

Ot
Wsam : Angular Sampling frequency
Qsam : Analog Freq
Q= Q-Qp for LPF
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= MIin[(Qp1-Qs1), (Qs2-Qp2)] for BPF
= Min[(Qs1-Q p1), (Qp2- Q)] for BSF

-3dB cutoff freq Q¢ can ve considered as follows

Q.= %(Qpﬂ)s) for LPF & HPF
Ot Ot
Qg = Qp1—7;£2c2 =Qp2+7 for BPF
Ot Ot
Qe = Qp1+7:9c2 =sz—7 for BSF

EX:

Calculate the Kaiser parameter and the no. of points in Kaiser Window to satisfy the
following lowpass specifications.

Pass band ripple in the freq range 0 to 1.5 rad/sec <0.1 dB

Minimum stop band attenuation in 2.5 to 5.0 rad /s > 40 dB

Sampling frequency: 10 rad/s

Sol:

1.
The impulse response samples can be calculated using h(n) = E[S'” Q,nT]

Where Qc = %(1.5+ 2.5)=2rad/s

And the no. of points required in this sequence can be found as follows
Stepl:
& — 10—0.05(40) _ 001

100.05(0.1) . 1

_ -3
100050 ;1 5.7564*10

=

Therefore we choose, O = 5.7564*107°
Step 2:

Aso = -20 log(5.7564%107°) = 44.797 dB
Step 3 & 4:
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p=0.5842 (44.797 -21)°4 +0.07886 (44.797 -21) = 3.9524

D = 2.566
Step 5:

szﬂz%.% => N=27

lo(5)
lo(/5)
(0)=——7=
© lo(55)
I0[3.9524 1—[%}2}
W (1= 10(3.94)  10.269 _ 0.9899

Io(3 9524 = =
oG 9524) 10(3.9524)  10.3729
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d)

9.0BJECTIVE PAPER-1

1)What is the parsval’s theorem expression in DTFT :
Yl X(MP=(1/2m) 7 |X (w)|%dw

Match the following:

2)E=00,P=0 a) power

3)E#w, P=0 b) Neither energy nor power
4)E=00,P#0,P# c) Energy

Match the following

5) et u(t) a) power

6) u(t) b) Neither energy nor power
7) 11t c) Energy

8) x (n) = 6e12Mn/4 what is the power of the signal
a)36W b)72W ¢)18W  d) none

Match the following: For a real valued sequence, the DTFT follow the properties as

9) Re [H (jw) ] a) Real valued function of w

10) Im[ H(jw) ] b) even function of w

11) F.T [even symmetric sequence] c) Imaginary valued function of w
12) F.T [odd symmetric sequence] d) odd function of w

13) x(n) = {4, 14 3} h(n) = {2,5,0, 4} what is the output of the system.
A

a) {8, 22, 11, 31, 4, 12} b) {8, 22, 11, 31, 4, 12} c) {8, 22, 11, 31, 4, 12}
nonet + 4

14) y(n) = x(n) * h(n) then y* (n) = {0, 0, x(n), 0 } * { 0, h(n), 0 } is equal to
a) {0, 0, y(n), 0} b){0,0,0,y(n),0,0} ¢)[0,0, y(n), 0} d){0,y(n), 0, 0}

15)If x(n) and h(n) are having N values each, to obtain linear convolution using circular

convolution, the number of zeros to be appended to each sequence is

AN-1 b)2N-1 ¢)N d)N+1

16)W49=?
a)-] b)+j o+l d) -1

17) DFT[ X" (-n)]="?
a) X "(K) b)X " (-K) ¢)X"(N-K) d)none

2 |3 |4 |5 |6 |7 |8 |9 |10 |11 |12 |13 |14 |15 |16 |1/

b |¢c |a |¢c |a |b |a |b |d |a |¢c |c |b |a |a |a
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10.0OBJECTIVE PAPER-2

1) The region of convergence of the Z-transform of a unit step function is
a)lZ|>1 b)|Zl<1 c¢)(real partofZ) >0 d) (real part of Z ) <0

2) The Z T of the function f(nT) = a"Tis
a)Z/(z-a")  b)z/(z+a") c) Z/(Z-aT) d) Z/(z+a™)

3) The Z T of the function §5(” —k) is
a) (Z-1)/Z2 b) Z/(Z-1)? c¢) ZI( Z-1) d) (Z-1)%/z

4) The Z T of a signal is given by X(Z2)= Z1(1-Z%/( 4(1-Z1)?) its final value is
a) s b) 0 c) 1 d) infinity

5) Consider the system shown in fig. The transfer function Y(Z) / X(Z) of the system is

> :@7
x(nTQ NI

A

H+ +
Z-l
|-b

a) (1+azl)/ (1+bz?) b) (1+bZ)/ (1+az?)
c) (1+az)/ (1-bz?) d) (1-bzY)/ (1+az?)
6) A linear discrete time system has the characteristic equation Z3-0.8 Z=0, the system
a) is stable b) is marginally stable
C) is un stable d) stability cannot be assessed from the given information

7) The advantage of Canonic form realization is
a) smaller no of delay elements  b) larger no of delay elements
¢) hard ware flexibility d) none

3
8) y(n) = |(Z_zakx(n—k) - Zizlbky(n—k) the minimum no of delay elements

needed to realize the system is
a) 5 b) 10 c) 8 d) 11

9) Expand CSOS Ans: Cascaded form of second order section.
PSOS Ans: Parallel form of Second order section

10) To ensure a causal system, the total no of zeros must be less than or equal to the total
number of poles (T/ F)
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1 2 3 4 5 6 7 8 9 10

a a C C a a a C T

11) The poles or zeros at the origin do effect the magnitude response ( T/ F)

12) All poles and zeros of a minimum phase system lie inside the unit circle (T / F)

13) To realize FIR filter

a) no feedback paths and forward path b) no feedback paths and no forward path
c) feedback paths and no forward path d) feedback paths and forward path

14) Find total no of complex multiplications using FFT for N=8:

15) Find total no of complex additions using FFT for N=8:

16) Find total no of real additions using direct DFT for N=8:

11 12 13 14 15 16

F T a 12 24 240

17)Whatis Z T of 2 3" u (-n-1): ___ (-2)/(1-3z)__ or (-22)/(z-3)

f—>
18) (2M) Show the structure of 5
Direct form —I1 for 2" order system — >
Z \
X(n) |~ | y(n)

ai

19) Show the structure of butterfly

—

ITTT »
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11.0BJECTIVE PAPER-3
State TRUE or FALSE

1) u(n) = Y 6(n-k)

2) X(n) = cos 0.5n is periodic sequence

3) Discrete-time sinusoidal signals with frequency that are separated by an integral
multiple of 2w are identical

4) y(n) =x(-n) is time invariant

Match the following
5) i|h(k)| <o 1 Zero input response

6) Impulse response of difference equationis 2 linear

7) y(n) = [x(n)| 3 Stable

8) y(n) = x(n?) 4 Time invariant
CHOOSE THE CORRECT ANSWER

9) x(n) = Cos 0.125I1n, what is the period of the sequence
a) 8 b) 16 c)125/2 d)none

10) y (n) =x(2n)
a) Causalb) Non-Causal c) Time invariant d) none

11) x(-n + 2) is obtained using following operartion
a) X (-n) is delayed by two samples b) x (-n) is advanced by two samples
¢) x (n) is shifted left by two samples d) none

12) In situations where both interpolation and decimation are to be performed in
succession, it is therefore best to

a) Interpolate first, then decimate b) Decimate first and interpolate

¢) Any order we can perform d) none

1 2 3 4 5 6 7 8 9 |10 11 12

T F T F 3 1 4 2 B B A a
13) The output of anti causal LTI system is

a)y (n) = 2 h(k)x(n-k) b)y (n) = Y-n(k)x(n—k)

¢)y (n) = > h(K)x(n—k) d)y () = 3 hk)x(n—k)
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14) 8(n-k) * x (n-k) is equal to

a) x(n-2k)

b) x(n-k)

15) Given x(n) the y(n) = x(2n —6) is
a) x(n) is Compressed by 2 and shifted by 6

shifted by 3

c) x(n) is Expanded by 2 and shifted by 3

¢) x(K)

d) none

b) x(n) is Compressed by 2 and

d) none

16) Decimation by a factor N is equivalent to

a) Sampling x(t) at intervals ts / N
c¢) N fold increase in sampling rate

17) In fractional delay, x(n-M/N), specify the order of operation.
a) Decimation by N, shift by M, Interpolation by N

b) Sampling x(t) at intervals tsN

d) none

b) Shift by M, Decimation by N and Interpolation by N
¢) Interpolation by N, Shift by M and Decimation by N

d) All are correct

18) Given g(n) ={1.2.3}, find x(n) = g (n/2), using linear interpolation
c) 1, 3/2,2,5/2,3 d)none

b)1,1,2 23,3

a)1,0,2 0,3
19)
J o hin)
—>
x(n
(") T

hs(n)

—— Yy(n)

In the figure shown, how do you replace whole system with single block
a) [ hy(n) + ha(n) ] * hs(n)
c) [ hu(n) + ha(n) ] hs(n)

b) ha(n)hs(n) * ha(n)hs(n)

d) none

20 The h(n) is periodic with period N, x(n) is non periodic with M samples, the output

y(n) is

a) Periodic with period N

b) Periodic with period N+M

¢) Periodic with period M d) none
13 14 15 16 17 18 19 20
C A B B C C A A
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12.0BJECTIVE PAPER-4

DIfFx(n) ={1,0,1, 2, 1,0,1,2, 1,0, -1} What is X(0)

A
a) 6 b) 10 c)0 d) none
2)Ifx(n)=1, |n<2
0, other wise
Find DTFT
a) sin(5w)/sinw b) sin(4w)/sinw  ¢) sin(2.5w)/sin(0.5w)  d) none of the above

3) If x(n)=h(n)=u(n), then h(n) is equal to
a) (n+1)u(n) b) r(n) c) r(n-1) d) none

4)ifx~(n)={1,0,L,1}and h~n)={ 1,2, 3,1} findy ~(n)
a) {6, 6,5, 43b) {1, 2, 4, 4} c) {5, 4, 1, 0} d) None

5)x(n)={4, 1, 3} h(n)= {2,5, 0, 4} what is the output of the system.
4 7\

a) {8, 22, 11, 31, 4, 12} b) {8,22,11,31,4,12}  ¢){8,22,11,31,4,12} d)

none
A

6) y(n) = x(n) * h(n) then y* (n) = {0, 0, x(n), 0 } *{ 0, h(n), 0 } is equal to
a) {0, 0, y(n), 0} b){0,0,0,y(), 0,0} ¢)[0,0, y(n),0} d){0, y(n),0, 0}
7) If x(n) and h(n) are having N values each, to obtain linear convolution using circular
convolution, the number of zeros to be appended to each sequence is
a)N—-1 Db)2N-1 c¢)N d)N+1

8)W49 =7?
a)—j b)+j cj+1 d) -1

9) DFT [X* (-n)] =2
a) X "(K) b)X " (-K) ¢)X"(N-K) d)none

10) If x(n)=X(K), then IDFT [ X (K), X(K) ] =7?
ayx(n/2) b)2x(n/2) c)¥%x(2n) d) none.

11) Both discrete and periodic in one domain are also periodic and discrete in other
domain (T / F)

12) If h(n)=-h(-n) then H(K) is purely real (T/F)
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13) Reversing the N point sequence in time is equivalent to reversing the DFT values (T /

F)
14) FT of non periodic discrete time sequence is non periodic (T/F)
Match the following: For a real valued sequence, the DTFT follow the properties as
15) Re [H (jw) ] a) Real valued function of w
16) [ H(w) ] b) even function of w
17) F.T [even symmetric sequence] ¢) Imaginary valued function of w
18) F.T [odd symmetric sequence] d) odd function of w
n=N-1
19) Write DFF & IDFT formulas. X(K)=Y x(n)Wn"k
n=0 N-1
x(n)=(1/N)Y X (k)Wn"
K=0
20) Total no of real multiplications in DFT is:
1 |2 |3 |4 |5 |6 |7 |8 |9 10|11 |12 |13 |14 |15|16 |17 |18 |19 |20
A |[C A/IA|IC/IB/IA/A|/A|/A|T |F |T |F |B |D |A |C 4n?

13.0BJECTIVE PAPER-5
Choose the Correct Answers

1. The Fourier transform of a finite energy discrete time signal, x(n) is defined as [ ]

a) X(o ):% x(n) el°" b)) X(w ):OOZ x(n) "

n=-o0 n=-o0

0

¢) X(w )=§: x(nyet"  d) X(w)= Y x(n) eden

n=0
2. Inverse DFT (IDFT) of X(K) is x(n), where k=0,1,-----n-1. It is given as [ ]

N-1 j27kn N+1 j27Kn

Axm= L XWe N Daxm= X XWe
g j27kn N j27kn

¢) x(n) = %ZO X e d)a)x(n)= %ZO X(K) e

3. A N — periodic sequence x(n) and its DFT x(k) are known. Then the DFT of x(n) =
d(n) will be
a) e-jZnnk b) 1 C) e-j2nnok/N d) e-j2nnk /N [ ]

4. If the length of sequence x(n) is L and h(n) is M then the length of o/p sequence of the

circular convolution is [ 1]
a)L+M  b)L+M-1 c)L ifL>M d) 2L if L=M
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STATE TRUE OR FALSE
5. The DFT of a sequence is a continuous function of [ ]

6. The DFT of even sequence is purely imaginary and DFT of odd
sequence is purely real [ ]

7. The circular shift of an N point sequence is equivalent to linear shift of its periodic

extension [ ]
8. The multiplication of DFT of two sequences is equal to DFT of the linear convolution
of two sequences [ ]

Fill in the blanks
9. The 4-point DFT of a sequence x(n) is
10.DFT of a sequence x(n) = & (n-np) is

11.An N point sequence is called If it is antisymmetric about point
zero on the circle

12.The two methods of sectioned convolution are &

13.DFT of multiplication of two sequences DFT {xi (n) x2(n) } =

14.DFT of even sequence is X(k)= & DFT of odd sequence
is X(K) =

15.To get the result of linear convolution with circular convolution of sequence x(n) &
h(n), the sequences should extended to the length of

16. Match the following

1 DFT [ xa(n) e(n) ] a) X (N-K)
2. DET[X'(N)] b) % [Xi(K) ® Xo(K)]
3. DFT [ x((-n)n ] c) X*(N-K)

4. X1(K) X5"(K) d) xa(n) ® x(n)

e) x1(n) ® Xz (-n)
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17. Show that the given sequence x(n) = { 1,-2,3,2,1,0} for the following conditions
using concentric circles.
a) x(-n) b) x(2-n) (2M)

18. Compute 4-point DFT of a sequence x(n) = {1,2,0,2} (2M)

14.0BJECTIVE PAPER-6
MULTIPLE CHOICES
1. In Impulse invariant transformation, the mapping of analog frequency Q to the digital
frequency is

a) onetoone b)manytoone c)onetomany  d)none

2. The digital frequency in bilinear transformation is

a) w = 2 tan’}(QT4/2) b) w = tan’}(QT/2)

c) w =2 tan’}(QT) d) w = 2 tan’}(Q/2)

3. Which technique is useful for designing analog LPF

a) Butter worth filter b) Chebyshev filter

c) Bothaandb d) none

4. Which filter is more stable?

a) Butter worth b) Chebyshev C) none

5. As Q increases , the magnitude response of LPF approaches with

a) —20Ndb/oct b) —-6Ndb/oct c) —10Ndb/dec  d) none

6. Using Impulse invariant technique the pole at S= Sp is mapped to Z-plane as
a) Z=eSpTs b)) Z=e GpTY c) Z=e5p (Ty) d) None

TRUE or FALSE

7. The disadvantage of Chebyeshev filter is less transition region

8. The advantage of Butter worth filter is flat magnitude response.

9. for the given same specifications order of the Chebyshev filter is more than
Butterworth filter

10. Poles of Butterworth filter lies on circle.

1 2 3 4 5 6
B A C A B B F T F T

~
oo
(o]
S

FILL IN THE BLANKS
11.The Butterworth LPF of order N is defined as: 1/(1+(s/jQ¢)?N)
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12.For N=3 what are the stable Butter worth angles :120°,180°,240°
13. —0.5db convert in to gain equivalent =0.994

14.Let Sy = 2076I1e91° Hy(S)=  k/(s%-10552.7s+(2076m)? (2M)

*

15.Given Qs = 2000; Ts = 10*; Q; = 2006

16.Using Bi-linear transformation, the pole at S = Sy is mapped into Z-plane using
(2M)
Z=1-(2+S,Ts)/(2-SpTs)

17.Given allowable ripples in Pass band is —3 dB, the value of n is 0.997 (2M)

15.0BJECTIVE PAPER-7
Choose the correct Answer

1. In impulse invariant transformation the mapping of analog frequency Q to digital

frequency o is [ ]

a) one to one b) many to one C) one to many none

2. The digital frequency in Bi —linear transformation is [ ]

a) o=2tanY(QT/2) b) o = tan’}(Q T /2)

C)w=2tan(QT) d) o =2 tan’}(Q /2)

3. Using bilenear transformation for T = 1sec the pole pk is in S- Plane is mapped to Z —
plane using [ ]

a)S=2 E”J b) S = 1+§1 ¢) S= [1” d) s=21

4. The normalized magnitude response of chebyshev type — | filter has a value of

at cut off frequency are [ ]
1 1 1
Q) —— b) — ¢) —— d) vi+¢&®
) V1+&? ) Vli+e ) V1-¢g? )
5. For high pass analog filter the transformation used is [ ]

a) S—>S/Q b)S>Q/S ¢)S->S/Q: d)S—> Q:/S

6. The magnitude response of Type | — chebyshev LPF is given by [ ]
1 2 1
H,(Q)’= H,(Q)’=
2) [H: () 1+£°C\ (Q/Q,) b) [H. () 1+£°CL(QIQ,)
1 1
¢) [H.(@)'= d) [H, (@) =

1-£°C2(QIQ,) 1+£°C(Q/Q,)
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7. The width of main lobe in rectangular window spectrum is [ ]
a) 2n/N b) 4n/N ¢) 8n/N d) 16n/N

8. The width of main lobe in Hamming window is [ ]
a) 4n/N b) 2n/N ¢) 8n/N d) 167/N
9. The frequency response of rectangular window Wg(w ) is [ ]
) Slr]wn/z b) SII’]YVI’]/Z ) Sln.wn/2 d) S!nwn/z
Sinw /2 Sinw Sinwn Sinwn/2
10In oo Window spectrum the width of main lobe is double that of
rectangular window for same value of N [ ]

a) Hamming window b) Kaiser window  c¢) Blackman window d) none

State TRUE or FALSE
11.The disadvantage of chebyshev filter is less transition region [ ]

12.For chebyshev Type 2 filter ripples are present in pass band

and stop band [ ]
13.The advantage of Butter worth filter is flat magnitude response. [ ]
14.for cheby shev Type 1 filter equi—ripples are present only [ ]
in pass band.

15.For same specifications, the order N of chebyshev filter is less compared to Butter

worth filter. [ ]

16.FIR filter have non-linear phase characteristics. [ ]

17.FIR filters are non — recursive and stable filters. [ ]
18.The design of Digital transformation H (z) of IIR filter is direct and FIR is indirect

[ ]

19.Poles of chebyshev filter lies on circle [ ]

20.In FIR filter with constant phase delay the impulse response is symmetric
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16.0OBJECTIVE PAPER-8

CHOOSE THE CORRECT ANSWER
1. The DTFT of a sequence x(n) is [ ]

a) ix(n)e_jWn b) ix(n)e'w” C) Tx(n)ejmdw d) ]Z'x(n)eiwndw

2. DTFT of e"o"x(n)is [ ]

a) x[ e 1] b) X[ e 1) ] c) x[ e J(WWo)] d) X[ e 1]
3. DTFT of x4[n] * Xxo[n] is [ ]

a) Xafw] Xofw]  b) 1 Xalw] Xelw]  ©) Xalw] *Xelw] d) - Xafw] * Xe[w]
4. The smallest value of N for which x(n +N) = x(n) holds is called [ ]

a) Fundamental period b) Fundamental frequency c) fundamental signal d) None

5. DFS of real part of periodic signal is [ ]
a) Xe(K) b) Xo (K)  ¢) Xr(K) d) Xim(K)
6. Expression for DFT is [ ]

) S XMW b) SxW C) Sk d) 3w,

7. DFT of x1[n] x2[n] is [ ]
a) % X4[K] * Xo[K] b) % Xi[K] +Xo[K] ) Xa[K] * Xo[K] d) Xa[K] + Xo[K]

8. If M & N are the lengths of x(n) & h(n) then length of x(n) * h(n) is [ ]
a)M+N-1 b) M+N+1 c¢)max (M,N) d)min(M,N)

9. Zero padding means [ ]
a) increasing length by adding zeros at the end of sequence
b) Decreasing length by removing zeros at the end
¢) Inserting zeros in between the samples  d) None of the above
Il STATE TRUE OR FALSE
10. The F.T of discrete signal is a discrete function of ® [ ]

11.In a discrete signal x(n), if x(n) =x(-n) then it is called symmetric signal [ ]

12.The F.T of the product of two time domain sequence is equivalent to product

of their F.T [ ]
13.The DFT of a signal can be obtained by sampling one period of FT of the signal
[ ]
14.DFS is same as DTFS [ ]

149



17.0BJECTIVE PAPER-9
CHOOSE THE CORRECT ANSWER
1. Power signal is

a) Periodic b) aperiodic c¢) Continuous d) none [ ]
2. W,"™is

—j2iK —j2I1Kn 2I1Kn
a)e N b) e 2K c)e N d)e N [ ]

3. When the sequence is circularly shifted in time domain by ‘m’ samples i.e. x((n-m))n
then on applying DFT, it is equivalent multiply sequence in frequency domain by

j2TIKm — j2T1IKm —211Km

a)e v b)e N C) e 2 de NV [ ]

4. Multiplication of sequence in time domain, on apply DFT, it corresponds to circular
convolution in frequency domain and is given as

8.) xl(n) Xg(n) (L)Xl(K) Xz(K)

b) xl(n) Xg(n) (—m—>X1(K)X2(K)

C) xl(n) * Xg(n) (L)Xl(K) Xz(K)

d) x1(n) Xe() <25 > Xa(K)Xa(K)

K=0

5. Linear convolution of two sequences N1 and N2 produces an output sequence of length
3.) Ni—N,+1 b) Ni+ N, -1 C) Ni+ N, +1 d) 2N1 — N> +1[ ]

FILL IN THE BLANKS
6. The basic signal flow graph for butterfly computation of DIT-FFT is

7. The Fourier transform of discrete time signal is called ...........................

8. FFT’s are based on the .......................c.o... of an N-point DFT into
successively smaller DFT’s.

9. The Fourier transform of x(n)*h(n) isequal to ...............oovviiiininnn...

10.Appending zeros to a sequence in order to increase the size or length of the sequence
iscalled ...l

11.In N-point DFT using radix 2 FFT, the decimation is performed ............... times.

12.In 8-point DFT by radix 2 FFT, there are ............... stages of computations with
.......................... butterflies per stage.

13.1f DFT of x(n) is X(K), then DFT of W, "x(n) iS ......eevvvviineinnn...
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ANSWER THE FOLLOWING

14.What are the differences between linear and circular convolution?

15.How many multiplications and additions are required to compute N-point DFT using

radix 2 FFT

16.How many multiplications and additions are required to compute N-point DFT

17.What is the expression for N-point DFT of a sequence x(n) ?

18.What is the expression for N-point IDFT of a sequence X(K) ?

19.Define Aliasing error.

20.What is meant by Inplace computation.
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18.0BJECTIVE PAPER-10
. How we can calculate IDFT using FFT algorithm. (2M)

. Draw the basic butterfly diagram for DIF algorithm.

- ZIX()] = X(Z) then ZLX(N-10)Y = «.vveeeeoeeoe e

. Define convolution property in Z-Transform.
. Find the Z-Transform and ROC for the signal x(n) = a" u(n).
. Find the Z-Transform and ROC for the signal x(n) = - a" u(-n-1).

. Write the initial value theorem expression.

CZLS(M) = e,

Z
. Find inverse Z-Transform for X(z) = Z—lwhen ROC is Z<1
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10.What are the differences and similarities between DIT and DIF algorithms. (2M)

11.Give the Direct form Il realization for second order system.

12.Give the Direct for I realization for second order system.

13.What is the relationship between Z-Transform and Fourier transform.

STATE TRUE OR FALSE:

14.ROC of a causal signal is the exterior of a circle of some radius r. [ ]
15.ROC of a anti causal signal is the exterior of a circle of some radius r. | ]
16.ROC of a two sided finite duration frequency is entire Z-plane. [ ]
17.Direct form | required less no.of memory elements as compared to Canonic form.[ ]

18.A linear time invariant system with a system function H(Z) is BIBO stable if and only
if the ROC for H(Z) contains unit circle. [ ]
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19.0BJECTIVE PAPER-11
ANSWER THE FOLLOWING

1. What are the advantages of digital filter over analog filter.

2. What is the relation between analog and digital radiant frequency in Impulse
Invariance design..

3. What is the relation between analog and digital radiant frequency in Bilinear
transformation design.

4. What are the drawbacks with Impulse Invariance method?

5. What is the disadvantage with Bilinear transformation technique.

6. What is the relation between S & Z in Bilinear transformation?

7. Mention any two techniques to design IIR Filter from analog filter.

8. What are the differences between Chebyshev type I and type II.
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9. What are the differences between Butterworth & Chebyshev filter.

10.What is the expression for magnitude squared frequency response of Butterworth
analog filter?

11.What is the expression for magnitude squared frequency response of Chebyshev
analog filter?

TRUE OR FALSE

12.Poles of Butterworth filter lies on circle. [ ]
13.Poles of Chebyshev filter lies on circle. [ ]
14.Transition bandwidth for Chebyshev is more as compared to Butterworth filter.[ ]
15.Butterworth filters are all pole filters. [ ]
16.Chebyshev, type-1l are all pole filters. [ ]

17.Chebyshev, type Il filter exhibit equiripple behavior in the pass band and monotonic
characteristic in the stopband. [ ]

18.Chebyshev, type | filter exhibit equiripple behavior in the pass band and monotonic
characteristic in the stopband. [ ]

19.Butterworth filter exhibit monotonic behavior both in passband and stopband.[ ]

20.For the given specifications order of the Chebyshev filter is more as compared to
Butterworth filter. [ ]
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20. OBJECTIVE PAPER-12

Define the following

Time variant system with an example(Equation)

Power signal with an example

Dynamic system

Recursive System

Non Recursive system

Give the example for FIR and IIR systems.

Give an example of Causal system

Write the condition to test the Linearity of the system

Plot y(n) = x(n-2) Give x(n) ={1,2,3,5,6}

Resolve the signal into impulse x(n)={4,5,4,4}y  ------ 2 Marks
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7. Give the expression for Convolution sum y(n)=

8. Find the Convolution Sum Graphically with all the steps------- 3 Marks

x(n)= ZT 1k1 h(n)= jl_lt
1 0 0 1

9. Write the properties of Convolution Sum ~ ——--—-—- 2 Marks

10.  Write the expression for X(n) in terms of impulses
11.  Write the necessary condition for the stability of the system

12.  Write the general form of Difference equation
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21.OBJECTIVE PAPER-13
State TRUE or FALSE

1. Indirect —form Il realization the number of memory locations required is more than
that of direct form —I realization [ ]

2. An LTI system having system function H(z) is stable if and only if all poles of H(z)

are out side the unit circle. [ ]
3. The inverse Z — transform of z/z-a is a" u(n) [ ]
4. Digital filters are not realizable for ideal case. [ ]

5. As the order of Butter worth filter increases than the response is closer to ideal filter
response. [ ]
Answer the following

6. Find the transfer function H(z) of the given difference equation
Y(n) = 0.7 y(n-1) — 0.12y(n-2) + x(n-1) + x(n-2)

7. Indicate the poles and zeros of the given system and also check the stability of the

system
2(z+1)

H(z) = (z-0.2)(z—-0.4)(z+0.5) (M)
8. Realize the given system function H(z) using direct form —II
H(z) = 3+3.627+0.6z" (2M)

1+0.1z21-0.2272
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9. Realize the given system function H(z) using cascade form (2M)

H@) =
(1+0.5z7)(2-0.5z7)

10.Find the inverse z-transform of x(z) =

(2M)

S using partial fraction method.
(z—-2)(z-3)

11.Using cauchy residue method find the inverse z- transform of

— Z .
X(z) = @002 for ROC :|z| >2 (2M)

12.Mention the two conditions to realize any digital filter

13.Draw the Magnitude response of Low Pass Butter Worth filter.

14.The order of the Butter Worth filter is obtained by using the formula N>

15.The cut- off frequency Q. is obtained by using the formula
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22.OBJECTIVE PAPER-14

Fill in the Blanks
1. The expansion of FFT is

2. The main advantage of FFT is

3. The number of multiplications needed in the calculation of DFT using FFT with 32-
point sequence =

4. number of additions are required to compute N — pt DFT using
radix -2 FFT.

5. What is decimation in time algorithm.
State TRUE or FALSE

6. For DIT —FFT algorithm the input is bit reversed and the output is in natural order
[

]

7. By using radix —2 DIT —FFT algorithm it is possible to calculate 6-point DFT.[ ]
8. Wy =1 [ ]
9. WM =1 [ ]
10.In DIT —FFT, the input sequence is divided into smaller subsequences [ ]

Answer the following

11.Calculate the DFT of the sequence x(n)={1,0,0,1} using DIT —FFT (2M)
12.Draw the Butterfly diagram for 8-point DFT using DIT —FFT algorithm  (2M)

13.Find IDFT of the sequence X(k) = { 10, 0, 10, 0} (2M)
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14. Write the steps for the calculation of IDFT using DIT —-FFT (2M)

15.Write the values of the following
AW, byws  cpwg  d)wy
23.0BJECTIVE PAPER-15
CHOOSE THE CURRECT ANSWER

1. y(n)=x(2n) is a system [ ]
a) time invariant b) causal c¢) non causal d) none

2. y(n)=nx3n)isa system [ ]
a) Linear  b) Non-linear c) time-invariant d) none

3. y(n)=x(n) +x(n-1) is a system [ ]
a) Dynamic  b) Static c¢) time variant d) None

4. x(-n+2) is obtained by which of the following operations [ ]
a) X(-n) is shifted left by 2 samples  b) x(-n) is shifted right by 2 samples
c) x(n) is shifted left by 2 samples dO none

5. The necessary and sufficient condition for causality of an LTI systemis|[ ]
a) h(n) =0 forn=0 b) h(n) =0 for n>0 ¢) h(n) =0 for n<0
d) none

6. The convolution of two sequences x(n) =h(n) = {1, 2, -1} [ ]
a){14,2,-41} b){1,-4124} c¢){112-44}
d) {4,-4,2,1,1}

Il STATE TRUE OR FALSE
7. An IIR system exhibits an impulse response for finite interval [ T/F]
8. If the energy of a signal is infinite then it is called energy signal [ T/F]
9. Static systems does not require memory [ T/F]

10. A linear system is stable if its impulse response is absolutely summable[T/F ]
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11 Answer the following:

11. The average power of a discrete time signal with period N is given by

12. The convolution sum of causal system with causal sequence is

13. Give the graphical representation of the following discrete signals.

) x(n) = (5-x) [4(x) —4(x-3)}

i) x(n) = -0.58(n+1) + 0.58(n) — 0.755 (n-2)

14. x(n) = {83, -2, 1,0,-1} show for x(-n) (am)
15. If x(n) = {1,2,-2,-1} show for x(n-2) & X( -n+2) (2M)
16. Find the convolution of u(n) * u(n-2) am
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17. If the impulse response h(n) = 2" u( -n) then determine the corresponding system is
causal or stable. (am)

18. Test the given discrete system for linearity , causality and time invariance
h(n) = n eX®l (2M)
ASSIGNMENT
1 (a) Draw the frequency response of N-point rectangular window.
(b) Design a fifth order band pass linear phase filter for the following specifications.
I. Lower cut-off frequency = 0.4 mrad/sec
1. Upper cut-off frequency = 0.6 nrad/sec
1. Window type = Hamming
Draw the filter structure. [4+12]

2) Design a band pass filter to pass frequencies in the range 1-2 radians/second using
Hanning window N=5. Draw the filter structure and plot its spectrum. [16]

3) (a) Compare the performances of rectangular window, hamming window and Keiser
window

(b) The desired response of a low pass filter is

Hd(ej!)= e—3!,3n o 3n/4

0,31/4 |o| =

Determine H(ej!) for M=7 using a Hamming window. [6+10]

4) (a) Design a linear phase low pass filter with a cut-off frequency of /2
radians/seconds. Take N=7

(b) Derive the magnitude and phase functions of Finite Impulse Response filter when

I. impulse response is symmetric & N is odd

Ii. impulse response is symmetric & N is even. [8+8]

5) (a) Design a low pass filter by the Fourier series method for a seven stage with cut-off
frequency at 300 Hz if ts = 1msec. Use hanning window.

(b) Explain in detail, the linear phase response and frequency response properties of
Finite Impulse Response filters. [8+8]

6) (a) Outline the steps involved in the design of FIR filter using windows.
(b) Determine the frequency response of FIR filter defined by y(n) = 0.25x(n)+ x(n-1)+
0.25x(n-2). Calculate the phase delay and group delay. [8+8]

7) (a) Define Infinite Impulse Response & Finite Impulse Response filters and com-pare.
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(b) Design a low pass Finite Impulse Response filter with a rectangular window for a
five stage filter given: Sampling time 1 msec; fc = 200Hz.Draw the filter structure with
minimum number of multipliers. [6+10]

ASSIGNMENT
1) a) What are the advantages of Multirate signal processing?
b) Differentiate between Decimator and Interpolator?
2) Prove that spectrum of down sampler is sum of M uniformly shifted and stretched
version of X(elV) scaled by a factor 1/M and also discuss the aliasing effect?
3) State and prove any one identity property in down sampler and any one identity
property in up sampler?
4) Let x(n)={1,3,2,5,-1,-2,2,3,2,1} find
a) Up sample by 2 times and down sample by 4 times
b) Down sample by 4 times and up sample by 2 times c) Justify why these outputs are

not equal.
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