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1. DIGITAL SIGNAL PROCESSING 

 A signal is defined as any physical quantity that varies with time, space or 

another independent variable. 

 A system is defined as a physical device that performs an operation on a 

signal. 

 System is characterized by the type of operation that performs on the signal. 

Such operations are referred to as signal processing. 

1.1 Advantages of DSP 

1. A digital programmable system allows flexibility in reconfiguring the digital 

signal processing operations by changing the program. In analog redesign of 

hardware is required. 

2. In digital accuracy depends on word length, floating Vs fixed point 

arithmetic etc. In analog depends on components. 

3. Can be stored on disk. 

4. It is very difficult to perform precise mathematical operations on signals in 

analog form but these operations can be routinely implemented on a digital 

computer using software. 

5. Cheaper to implement. 

6. Small size. 

7. Several filters need several boards in analog, whereas in digital same DSP 

processor is used for many filters. 

1.2 Disadvantages of DSP 

1. When analog signal is changing very fast, it is difficult to convert digital 

form .(beyond 100KHz range) 

2. w=1/2 Sampling rate. 

3. Finite word length problems. 

4. When the signal is weak, within a few tenths of millivolts, we cannot 

amplify the signal after it is digitized. 
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5. DSP hardware is more expensive than general purpose microprocessors & 

micro controllers. 

6. Dedicated DSP can do better than general purpose DSP. 

1.3 Applications of DSP 

1. Filtering.  

2. Speech synthesis in which white noise (all frequency components present to 

the same level) is filtered on a selective frequency basis in order to get an audio 

signal. 

3. Speech compression and expansion for use in radio voice communication. 

4. Speech recognition. 

5. Signal analysis. 

6. Image processing: filtering, edge effects, enhancement. 

7. PCM used in telephone communication. 

8. High speed MODEM data communication using pulse modulation systems 

such as FSK, QAM etc. MODEM transmits high speed (1200-19200 bits per 

second) over a band limited (3-4 KHz) analog telephone wire line. 

9. Wave form generation. 

1.4 Classification of Signals 

I. Based on Variables:  

1. f(t)=5t : single variable 

2. f(x,y)=2x+3y : two variables 

3. S1= A Sin(wt) : real valued signal 

4. S2 = A ejwt : A Cos(wt)+j A Sin(wt) : Complex valued signal 

5. S4(t)=

















)(3

)(2

)(1

tS

tS

tS

 : Multichannel signal 

Ex: due to earth quake, ground acceleration recorder 

6. I(x,y,t)=

















),,(

),,(

),,(

tyxIb

tyxIg

tyxIr

 multidimensional 
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II. Based on Representation: 

 

III. Based on duration.  

1. right sided: x(n)=0 for n<N 

2. left sided :x(n)=0 for n>N 

3. causal : x(n)=0 for n<0 

4. Anti causal : x(n)=0 for n0 

5. Non causal : x(n)=0 for n >N 

IV. Based on the Shape. 

1.  (n)=0  n 0   

              =1   n=0 

 

2. u (n) =1 n0 

         =0    n<0 
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Arbitrary sequence can be represented as a sum of scaled, delayed impulses. 

P (n) = a-3 (n+3) +a1  (u-1) +a2  (u-2) +a7  (u-7)  

 Or 

x(n) = )()( knkx
k






   

u(n) = )(k
n

k




 =  (n) +  (n-1)+  (n-2)….. 

     = )(
0

kn
k






  

3.Discrete pulse signals. 

Rect (n/2N) =1  n N 

          = 0  else where. 

5.Tri (n/N) = 1- n /N n N 

   = 0   else where. 

1. Sinc (n/N)= Sa(n /N) = Sin(n /N) / (n /N), Sinc(0)=1 

Sinc (n/N) =0  at n=kN, k=  1,  2… 

Sinc (n) =  (n)  for N=1;    (Sin (n ) / n=1=  (n)) 

6.Exponential Sequence 

x (n) = A  n 

If A &   are real numbers, then the sequence is real. If 0< <1 and A is +ve, 

then sequence values are +ve and decreases with increasing n. 

For -1< <0, the sequence values alternate in sign but again decreases in 

magnitude with increasing n. If  >1, then the sequences grows in magnitude as n 

increases. 

7.Sinusoidal Sequence 

x(n) = A Cos(won+ )  for all n 
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8.Complex exponential sequence  

If  =  ejwo 

    A = A  ej  

x(n) = A  ej n
 ejwon 

        = A  n Cos(won+ ) + j A  n Sin(won+ ) 

If   >1, the sequence oscillates with exponentially growing envelope. 

If   <1, the sequence oscillates with exponentially decreasing envelope. 

So when discussing complex exponential signals of the form x(n)= A ejwon or 

real sinusoidal signals of the form x(n)= A Cos(won+ ) , we need only consider 

frequencies in a frequency internal of length 2  such as  < Wo <   or 0

Wo<2 . 

V. Deterministic (x (t) =  t   x (t) = A Sin(wt)) 

 & Non-deterministic Signals. (Ex: Thermal noise.) 

VI. Periodic & non periodic based on repetition. 

VII. Power & Energy Signals 

Energy signal: E = finite, P=0 

 Signal with finite energy is called energy signal. 

 Energy signal have zero signal power, since averaging finite energy over 

infinite time. All time limited signals of finite amplitude are energy signals. 

Ex: one sided or two sided decaying. Damped exponentials, damped sinusoidal. 

 x(t) is an energy signal if it is finite valued and x2 (t) decays to zero fasten 

than  
t

1
as t  . 
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Power signal: E = , P 0, P      Ex: All periodic waveforms 

Neither energy nor power:   E= , P=0   Ex: 1/ t  t1   E= , P= ,  Ex: tn 

VIII. Based on Symmetry 

1. Even      x(n)=xe(n)+xo(n) 

2. Odd      x(-n)=xe(-n)+xo(-n) 

3. Hidden     x(-n)=xe(n)-xo(n) 

4. Half-wave symmetry.   xe(n)= 
2

1
[x(n)+x(-n)] 

xo(n)= 
2

1
[x(n)-x(-n)]  

Signal Classification by duration & Area. 

a. Finite duration: time limited.         

 

b. Semi-infinite extent: right sided, if they are zero for t <  where  = finite 

 

c. Left sided: zero for t >  

 

Piecewise continuous: possess different expressions over different intervals. 

Continuous: defined by single expressions for all time. x(t) = sin(t) 

Periodic: xp (t) = xp (t  nT) 

For periodic signals P = 
T

tx
T

0

)(
1 2 dt 
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X rms = P  

For non periodic 

P = Lt 
T

tx
To

0

)(
1 2 dt 

Xavg = Lt 
To

dttx
0

)(  

x(t) = A cos( 2 fo t + )     P=0.5 A2 

x(t) = A e  j( 2 fo t + )     P=A2 

 

 E= A2 b   E = 
2

1
A2 b       E = 

3

1
A2 b 

Q. 

 




0

e - t  dt = 


1
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Q.  

 

Ex = 
2

1
A2 0.5T + 

2

1
 (-A)2 0.5T = 0.5 A2 T 

Px = 0.5 A2 

Q. 

 

 Ey = [
3

1
A2 0.5T] 2 = 

3

1
 A2 T    

 Py = 
3

1
 A2 

 x(t) = A ejwt  is periodic 

Px = 
T

tx
T

0

)(
1 2 dt = A2 

 x(2t -6 ): compressed by 2 and shifted right by 3 OR shifted by 6 and 

compressed by 2. 

 x(1-t): fold x(t) & shift right by 1 OR shift right and fold. 

 x(0.5t +0.5) Advance by 0.5 & stretched by 2 OR stretched by 2 & advance 

by 1. 
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y (t) = 2 x [- 
3

)2( t
] = 2 x[

3

2

3


 t
]       2 x( t +  ) ; 5 +  =-1; - +  =1 => 

= -1/3 ;   = 2/3 

Area of symmetric signals over symmetric limits (-  ,  ) 

Odd symmetry: 






x0 (t) dt =0 

Even symmetry: 






xe (t) dt = 2 


0

xe (t) dt 

Xe (t) +Ye (t): even symmetry. 

Xe (t) Ye (t):   even symmetry. 

Xo (t) +Yo (t): odd symmetry. 

Xo (t) Xo (t):   even symmetry. 

Xe (t) +Yo (t): no symmetry. 

Xe (t) Yo (t):   odd symmetry. 

Xe(n)= 
2

1
[x(n)+x(-n)] 

Xo (n) = 
2

1
[x (n)-x (-n)]  

 Area of half-wave symmetry signal always zero. 

 Half wave symmetry applicable only for periodic signal. 

 F0 = GCD ( f1,f2) 

T = LCM (T1, T2) 

 Y(t) = x1(t) + x2(t) 

Py= Px1+Px2 

Y(t)rms = Py  
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 U(0) = 0.5 is called as Heaviside unit step. 

 X(t) = Sin(t) Sin( t) 

= 0.5 cos (1- )t – 0.5 cos (1+ ) t 

W1=1-  

W2=1+      almost periodic OR non periodic. 

 Px = 0.5[0.52 +0.52] =0.25 W 

 

Area of any sinc or Sinc 2 equals area of triangle ABC inscribed within the main 

lobe. 

Even though the sinc function is square integrable ( an energy signal) , it is not 

absolutely integrable( because it does not decay to zero faster than 
t

1
) 

 (t) = 0   t 0         

              =    t=0  




 d)(  = 1 

An impulse is a tall narrow spike with finite area and infinite energy. 

The area of impulse A  (t) equals A and is called its strength. How ever its 

hight at t=0 is  . 

 

 



 

14 

      = 2  (t) – 2e-t u(t) 

2 e-t  (t) = 2  (t) 

 [ [t-  ]] = )(
1




t  

 

 

I 2 = 




2

4

)12()2cos( dttt   = 




2

4

)5.0(5.0)2cos( dttt  = 0.5 cos(2 t) at t=-0.5 = -

0.5 

x1(t) = x(t) 


k

 (t-kts ) = 


k

x(kts)  (t-kts) 

x1(t) is not periodic. 

The doublet 

 

 ’(t) =0                   t 0 
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          = undefined       t=0           




 0)(' dtt      ’ (-t) = - ’ (t) then Odd 

function. 

 [ [t-  ]] = )(
1




t  

Differentiating on both sides 

 ’ [ [t-  ]] = )('
1




t  

With  =-1 

 ’ (-t) = - ’ (t) 

)]()([  ttx
dt

d
= x’ (t)  (t- ) + x (t) ’ (t- ) 

           = x’ ( )  (t- ) + x (t) ’ (t- )-----------1 

Or 

)]()([  ttx
dt

d
 = )]()([  tx

dt

d
= x ( ) ’ (t- ) -----------2 

1 = 2 

x’ ( )  (t- ) + x (t) ’ (t- ) = x ( ) ’ (t- ) 

  x (t) ’ (t- ) = x ( ) ’ (t- ) - x’ ( )  (t- ) 






 x (t) ’ (t- ) dt = 




 x ( ) ’ (t- ) dt - 




 x’ ( )  (t- ) dt 

= 0- x’ ( ) = - x’ ( ) 

Higher derivatives of  (t) obey  n(t) = (-1)n  n(t) are alternately odd and 

even, and possess zero area. All are eliminating forms of the same sequence 

that generate impulses, provided their ordinary derivatives exits. None are 

absolutely integrable. The impulse is unique in being the only absolutely 

integrable function from among all its derivatives and integrals (step, ramp etc) 

What does the signal x(t) = e-t  ’(t) describe? 

x(t) = ’ (t) – (-1)  (t) = ’ (t) +  (t) 

I = 




2

2

)]5.0(')cos(8)]22()3[( dttttt   
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  = 0.5 (t-3) 1t   - 8 5.0][cos  tt
dt

d
  

  = 23.1327 Answer. 

1.5 Operation on Signals: 

1. Shifting. 

x(n)  shift right  or  delay = x(n-m) 

x(n)  shift left or  advance = x(n+m) 

2. Time reversal or fold. 

x(-n+2) is x(-n) delayed by two samples. 

x(-n-2) is x(-n) advanced by two samples. 

Or 

x(n) is right shift x(n-2), then fold x(-n-2) 

x(n) fold x(-n) shift left x(-(n+2)) = x(-n-2) 

Ex:  

x(n) = 2, 3 ,

4 , 5, 6, 7 .   

Find   1. y(n)=x(n-3)  2. x(n+2)  3. x(-n)  4. x(-n+1)  5. x(-n-2) 

1. y(n)= x(n-3) = { 

0 ,2,3,4,5,6,7} shift x(n) right 3 units.                                          

2. x(n+2) = { 2,3,4,5,

6 ,7} shift x(n) left 2 units.  

3. x(-n) = { 7,6,5,

4 ,3,2} fold x(n) about n=0.  

4. x(-n+1) = { 7,6,

5 ,4,3,2} fold x(n), delay by 1.  

5. x(-n-2) = { 7,6,5,4,3,2} fold x(n), advanced by 2. 

3. a. Decimation. 

Suppose x(n) corresponds to an analog signal x(t) sampled at intervals Ts. The 

signal y(n) = x(2n) then corresponds to the compressed signal x(2t) sampled at Ts 

and contains only alternate samples of x(n)( corresponding to x(0), x(2), x(4)…). 

We can also obtain directly from x(t) (not in compressed version). If we sample it 

at intervals 2Ts (or at a sampling rate Fs = 
Ts2

1
 ). This means a two fold reduction 
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in the sampling rate. Decimation by a factor N is equivalent to sampling x(t) at 

intervals NTs and implies an N-fold reduction in the sampling rate. 

b. Interpolation. 

y(n) = x(n/2) corresponds to x(t) sampled at Ts/2 and has twice the length of 

x(n) with one new sample between adjacent samples of x(n). 

The new sample value as ‘0’ for Zero interpolation. 

The new sample constant = previous value for step interpolation. 

The new sample average of adjacent samples for linear interpolation. 

Interpolation by a factor of N is equivalent to sampling x(t) at intervals Ts/N 

and implies an N-fold increase in both the sampling rate and the signal length. 

Ex:             Decimation        Step interpolation 

 {

1 , 2, 6, 4, 8}    {


1 , 6, 8}         {


1 , 1, 6, 6, 8, 8} 

                                         n2n                             nn/2         

                           Step interpolation                             Decimation 

 

 {

1 , 2, 6, 4, 8}    {


1 , 1,2,2,6, 6,4,4,8, 8}         {


1 , 2, 6, 4, 8} 

                                      nn/2                                         n2n             

Since Decimation is indeed the inverse of interpolation, but the converse is not 

necessarily true. First Interpolation & Decimation. 

Ex:      x(n) = { 

1 1, 2, 5, -1} 

x(n/3)  = { 1,0,0,

2 2,0,0,5,0,0,-1,0,0}  Zero interpolation.               

 = { 1,1,1, 

2 ,2,2,5,5,5,-1,-1,-1}  Step interpolation.  

 = { 1,
3

4
, 

3

5
, 


2 , 3,4,5,3,1,-1, -

3

2
,-

3

1
}  Linear interpolation.  

4. Fractional Delays. 

It requires interpolation (N), shift (M) and Decimation (n): x (n -
N

M
) = x (

N

MNn )( 
) 

x(n) = {2, 4, 

6 , 8}, find y(n)=x(n-0.5) = x (

2

12 n
) 
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g(n) = x (n/2) = {2, 2, 4, 4, 

6 , 6, 8,8} for step interpolation.                                            

 h(n) =g(n-1) = x(
2

1n
) = {2, 2, 4, 


4 , 6, 6,8,8}     

          

 y(n) = h(2n) = x(n-0.5) = x(
2

12 n
) = {2, 


4 , 6, 8}                         

 OR 

 g(n) = x(n/2) = {2,3,4,5, 

6 ,7,8,4} linear interpolation.   

    

 h(n) = g(n-1) = {2,3,4,

5 , 6, 7,8,4}                 

 g (n) = h(2n)={3,5,7,4} 

1.6 Classification of Systems 

1. a. Static systems or memory less system. (Non Linear / Stable) 

Ex. y(n) = a x (n) 

    = n x(n) + b x3(n) 

    = [x(n)]2   = a(n-1) x(n)  

       y(n) =  [x(n), n]  

If its o/p at every value of ‘n’ depends only on the input x(n) at the same value 

of ‘n’  

Do not include delay elements. Similarly to combinational circuits. 

      b. Dynamic systems or memory. 

If its o/p at every value of ‘n’ depends on the o/p till (n-1) and i/p at the same 

value of ‘n’ or previous value of ‘n’. 

Ex. y(n) = x(n) + 3 x(n-1) 

    = 2 x(n) - 10 x(n-2) + 15 y(n-1) 

Similar to sequential circuit. 

2. Ideal delay system. (Stable, linear, memory less if nd=0) 

Ex. y (n) = x(n-nd) 

nd is fixed = +ve integer. 
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3. Moving average system. (LTIV ,Stable) 

y(n) = 1/ (m1+m2+1) 



2

1

)(
m

mk

knx  

This system computes the nth sample of the o/p sequence as the average of 

(m1+m2+1) samples of input sequence around the nth sample. 

 

 If   M1=0; M2=5 

 y(7) = 1/6 [ 



5

0

)7(
k

kx ] 

               = 1/6 [x(7) + x(6) + x(5) + x(4) + x(3) + x(2)] 

      y(8) = 1/6 [x(8) + x(7) + x(6) + x(5) + x(4) + x(3)] 

 So to compute y (8), both dotted lines would move one sample to right. 

4. Accumulator.      ( Linear , Unstable ) 

 y(n) = 


n

k

kx )(   

         = 




1

)(
n

k

kx  + x(n) 

         = y(n-1) + x(n) 

 x(n) = { …0,3,2,1,0,1,2,3,0,….} 

 y(n) = { …0,3,5,6,6,7,9,12,12…} 

 O/p at the nth sample depends on the i/p’s till nth sample  

Ex:  

x(n) = n u(n) ; given y(-1)=0.  i.e. initially relaxed. 
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y(n) = 




1

)(
k

kx +


n

k

kx
0

)(  

       = y(-1) + 


n

k

kx
0

)(  = 0 + 


n

k

n
0

 = 
2

)1( nn
 

5. Linear Systems. 

If y1(n) & y2(n) are the responses of a system when x1(n) & x2(n) are the 

respective inputs, then the system is linear if and only if  

)](2)(1[ nxnx  = )](1[ nx  + )](2[ nx  

    =  y1(n) + y2(n)   (Additive property) 

)]([ nax  = a )]([ nx  = a y(n)   (Scaling or Homogeneity) 

The two properties can be combined into principle of superposition stated as 

)](2)(1[ nbxnax   = a )](1[ nx  + b )](2[ nx  

Otherwise non linear system. 

6. Time invariant system. 

Is one for which a time shift or delay of input sequence causes a corresponding 

shift in the o/p sequence. 

y(n-k) = )]([ knx         TIV 

                                     TV 

7. Causality. 

A system is causal if for every choice of no the o/p sequence value at index n= 

no depends only on the input sequence values for n  no. 

y(n) = x(n) + x(n-1) causal. 

y(n) = x(n) + x(n+2) + x(n-4)  non causal. 

8. Stability. 

For every bounded input )(nx   Bx <   for all n, there exists a fixed +ve finite 

value By such that )(ny   By < . 

1.7 PROPERTIES OF LTI SYSTEM. 

1. x(n) = 





k

knkx )()(   
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y(n) =  [ 





k

knkx )()(  ]  for linear 

 


k

kx )(   [ (n-k)] for time invariant 

 





k

knhkx )()( = x(n) * h(n) 

Therefore o/p of any LTI system is convolution of i/p and impulse response. 

y(no) = 





k

knoxkh )()(  

         =  





1

)()(
k

knoxkh +





0

)()(
k

knoxkh  

         = h(-1) x(n0+1) + h(-2) x(n0+2)……….+h(0) x(n0) + h(1) x(n0-1) + …. 

 y(n) is causal sequence if h(n) =0  n<0 

 y(n) is anti causal sequence if h(n) =0 n0 

 y(n) is non causal sequence if h(n) =0 |n|>N 

 Therefore causal system y(n) = 





0

)()(
k

knxkh  

 If i/p is also causal y(n) = 



n

k

knxkh
0

)()(  

2. Convolution operation is commutative. 

x(n) * h(n) = h(n) * x(n) 

3. Convolution operation is distributive over additive. 

x(n) * [h1(n) + h2(n)] = x(n) * h1(n) + x(n) * h2(n)  

4. Convolution property is associative. 

x(n) * h1(n) * h2(n) = [x(n) * h1(n)]  * h2(n) 

 

5 y(n) = h2 * w(n)    =   h2(n)*h1(n)*x(n) = h3(n)*x(n) 
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6  

  

 h (n) = h1(n) + h2(n) 

7 LTI systems are stable if and only if impulse response is absolutely 

summable. 

)(ny  =  





k

knxkh )()(    


k

)(kh  )( knx   

 Since x (n) is bounded )(nx bx<  

  )(ny   Bx 


k

)(kh  

S= 


k

)(kh   is necessary & sufficient condition for stability. 

8  (n) * x(n) = x(n) 

9 Convolution yields the zero state response of an LTI system. 

10 The response of LTI system to periodic signals is also periodic with 

identical period. 

y(n) = h (n) * x(n) 

       = 





k

knxkh )()(  

y (n+N) = 





k

Nknxkh )()(  
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  put n-k = m 

 = 





m

Nmxmnh )()(  

= 





m

mxmnh )()(  

 m=k 

= 





k

kxknh )()(    =  y(n) (Ans) 

Q. y (n)-0.4 y(n-1) =x (n). Find causal impulse response? h(n)=0 n<0. 

h(n) = 0.4 h(n-1) + )(n  

h(0) = 0.4 h(-1) + )0( =1 

h(1) = 0.4 h(0) = 0.4 

h(2) = 0.42 

h(n) = 0.4n for n0 

Q. y(n)-0.4 y(n-1) = x(n). find the anti-causal impulse response? h(n)=0 for n

0 

 h(n-1) = 2.5 [h(n)- )(n ] 

 h(-1) =  2.5 [h(0)- )0( ] = -2.5 

 h(-2) = -2.52  . …….. h(n) = -2.5n  valid for n -1 

Q. x(n)={1,2,3} y(n)={3,4} Obtain difference equation from i/p & o/p 

information  

 y(n) + 2 y(n-1) + 3 y(n-2) = 3 x(n) + 4 x(n-1) (Ans) 

Q. x(n) = {4,4,}, y(n)= x(n)- 0.5x(n-1). Find the difference equation of the 

inverse system. Sketch the realization of each system and find the output of each 

system. 

Solution:  

The original system is y(n)=x(n)-0.5 x(n-1) 

The inverse system is x(n)= y(n)-0.5 y(n-1) 

y (n) = x (n) – 0.5 x(n-1) 
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Y (z) = X (z) [1-0.5Z-1] 

)(

)(

zX

zY
=1-0.5 Z-1                          System 

 

        Inverse System 

y (n) – 0.5 y(n-1) =x(n) 

Y (z) [1-0.5 Z-1] = X (z) 


)(

)(

zX

zY
[1-0.5 Z-1] -1 

g (n) = 4  (n) - 2 (n-1) + 4 (n-1) - 2 (n-2) = 4 (n) + 2 (n-1) - 2 (n-2) 

y (n) = 0.5 y(n-1) + 4 (n) + 2 (n-1) – 2 (n-2) 

y (0) = 0.5y(-1) + 4 (0) = 4 

y(1) = 4 

y(2) = 0.5 y(1) - 2 (0) = 0 

y(n) = {4, 4} same as i/p. 

Non Recursive filters Recursive filters 

y(n) = 


k

ak x(n-k)   

for causal system 

= 


0k

 ak x(n-k)    

y(n) = 


N

k 0

ak x(n-k) – 


N

k 1

bk y(n-

k) 

Present response is a function of 
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For causal i/p sequence  

y(n) = 


N

k 0

 ak x(n-k) 

Present response depends only on 

present i/p & previous i/ps but not future 

i/ps. It gives FIR o/p. 

the present and past N values of the 

excitation as well as the past N 

values of response. It gives IIR o/p 

but not always. 

y(n) – y(n-1) = x(n) – x(n-3) 

 

Q. y(n) = 
3

1
[x (n+1) + x (n) + x (n-1)]    Find the given system is stable or not? 

 Let x(n) =  (n) 

 h(n) = 
3

1
[  (n+1) +   (n) +   (n-1)] 

 h(0) =  
3

1
 

 h(-1) =  
3

1
       

 h(1) =  
3

1
       

S= )(nh <      therefore Stable. 

 

Q. y(n) = a y(n-1) + x(n)   given y(-1) = 0 

 Let x(n) =  (n)        

 h(n) = y(n) = a y(n-1) +  (n)     

 h(0) = a y(-1) +  (0) = 1 = y(0)     

 h(1) = a y(0) +  (1) = a  

      h(2) = a y(1) +  (2) = a2 . . . . . . . h(n) = an u(n)   stable if a<1. 

 y(n-1) = 
a

1
[ y(n) – x(n)] 
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 y(n) = 
a

1
[ y(n+1) – x(n+1)] 

 y(-1) = 
a

1
[ y(0) – x(0)]=0 

 y(-2) = 0 

Q. y(n) = 
1

1

n
 y(n-1) + x(n)  for n0 

  = 0        otherwise. Find whether given system is time variant or not? 

 Let x(n) =  (n) 

 h (0) = 1 y(-1) + (0) = 1 

 h(1) = ½ y(0) +  (1) = ½ 

 h(2) = 1/6 

 h(3) = 1/24 

  if x(n) =  (n-1) 

     y(n) = h(n-1) 

 h(n-1) = y(n) = 
1

1

n
 h(n-2) +  (n-1) 

n=0 h(-1) = y(0) = 1 x 0+0 =0 

n=1 h(0) = y(1) = ½ x 0 +  (0)= 1 

n=2 h(1) = y(2) = 1/3 x 1 + 0 = 1/3 

 h(2) = 1/12 

 h (n, 0)  h(n,1)    TV 

Q. y (n) = 2n x(n)    Time varying 

Q. y (n) = 
3

1
[x (n+1) + x (n) + x (n-1)] Linear 

Q. y (n) = 12 x (n-1) + 11 x(n-2) TIV 

Q. y (n) = 7 x2(n-1) non linear   

Q. y (n) = x2(n) non linear 

Q. y (n) =  n2 x (n+2) linear   

Q. y (n) = x (n2) linear   

Q. y (n) =  ex(n) non linear   
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Q. y (n) =  2x(n) x (n) non linear, TIV 

(If the roots of characteristics equation are a magnitude less than unity. It is a 

necessary & sufficient condition)  

Non recursive system, or FIR filter are always stable. 

Q. y (n) + 2 y2(n) = 2 x(n) – x(n-1)  non linear, TIV 

Q. y (n) - 2 y (n-1) = 2x(n) x (n) non linear, TIV 

Q. y (n) + 4 y (n) y (2n) = x (n) non linear, TIV 

Q. y (n+1) – y (n) = x (n+1) is causal  

Q. y (n) - 2 y (n-2) = x (n) causal 

Q. y (n) - 2 y (n-2) = x (n+1) non causal 

Q. y (n+1) – y (n) = x (n+2) non causal 

Q. y (n-2) = 3 x (n-2) is static or Instantaneous. 

Q. y (n) = 3 x (n-2) dynamic 

Q. y (n+4) + y (n+3) = x (n+2) causal & dynamic 

Q. y (n) = 2 x ( n ) 

        If  =1 causal, static 

  <1 causal, dynamic 

  >1 non causal, dynamic 

   1 TV 

Q. y (n) = 2(n+1) x (n) is causal & static but TV. 

Q. y (n) = x (-n) TV 

1.8 Solution of linear constant-co-efficient difference equation 

Q. y(n)-3 y (n-1) – 4 y(n-2) = 0 determine zero-input response of the system;  

     Given y(-2) =0 & y(-1) =5 

Let solution to the homogeneous equation be   

yh (n) =  n 

 n - 3 n-1 - 4 n-2 =0 

 n-2[ 2 - 3 - 4] =0 

 = -1, 4 
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yh (n) = C1 1
n + C2  2

n    =    C1(-1)n + C2 4
n     

y(0) = 3y(-1) +4 y(-2) = 15 

   C1+ C2 =15 

y (1) = 3y (0) +4 y (-1) = 65 

   -C1+4C2 =
 65         Solve:   C1 = -1 & C2=16 

y(n) = (-1)n+1 + 4n+2  (Ans) 

If it contain multiple roots yh(n) = C1 1
n + C2 n 1

n  + C3 n
2  1

n     

or    1
n  [C1+ nC2  + n2 C3….] 

Q. Determine the particular solution of y(n) + a1y(n-1) =x(n) 

x(n) = u(n) 

Let yp (n) = k u(n) 

k u(n) + a1 k u(n-1) =u(n) 

To determine the value of k, we must evaluate this equation for any n1 

k + a1 k =1 

k = 
11

1

a
 

yp (n) = 
11

1

a
 u(n)  Ans 

x(n) yp(n) 

1. A 

2. Amn 

3. Anm 

4. A Coswon or A Sinwon 

K 

Kmn 

Ko n
m + K1n

m-1 + …. Km 

K1 Coswon + K2 Sinwon 

Q. y(n) = 
6

5
y(n-1) - 

6

1
y(n-2) + x(n)           x(n) = 2n   n0 

Let yp (n) = K2n 

K2n u(n) =
6

5
K 2n-1 u(n-1) - 

6

1
K 2n-2 u(n-2) + 2n u(n) 

For n    2 

4K = 
6

5
(2K) - 

6

1
K +4       Solve for K=8/5 
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       yp (n) = 
5

8
2n      Ans 

Q. y(n) – 3 y(n-1) - 4 y(n-2) = x(n) + 2x(n-1) Find the h(n) for recursive 

system. 

We know that yh (n) = C1 (-1)n + C2 4
n     

  yp (n) =0 when x(n) =  (n) 

for n=0 

y(0) - 3y(-1) - 4 y(-2) =  (0) + 2 (-1) 

y(0) =1 

y(1) = 3 y(0) +2 = 5 

C1 + C2 
 =1    

-C1 + C2 =5    Solving C1 = 
5

1
  ; C2 = 

5

6
 

  h(n) = [
5

1
  (-1)n + 

5

6
4n ] u(n) Ans 

OR 

h(n) – 3 h(n-1) -4 h(n-2) =  (n) + 2 (n-1) 

h(0) = 1 

h(1) =3 h(0) + 2 = 5 

plot for h(n) in both the methods are same. 

Q. y(n) – 0.5 y(n-1) = 5 cos 0.5n  n0 with y(-1) = 4 

yh(n) =  n 

 n – 0.5  n-1 =0 

 n-1 [ -0.5] =0 

 =0.5 

  yh(n) = C (0.5)n 

yp(n) = K1 cos 0.5n + K2 sin 0.5n  

yp(n-1) = K1 cos 0.5(n-1) + K2 sin 0.5(n-1)  

 = - K1 sin 0.5n - K2cos 0.5n  

yp(n) - 0.5 yp(n-1) = 5 cos 0.5 n  
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       = (K1 + 0.5 K2) cos 0.5 n -(0.5 K1 – K2) sin 0.5n  

K1 + 0.5 K2 = 5 

0.5 K1 – K2 =0   Solving we get: K1= 4 & K2=2  

  yp(n) = 4 cos 0.5 n + 2 sin 0.5n  

The final response  

y (n) = C (0.5)n + 4 cos 0.5 n + 2 sin 0.5n  

with y(-1) = 4 

4 = 2C-2     

i.e. C=3 

  y (n) = 3 (0.5)n + 4 cos 0.5 n + 2 sin 0.5n   for n0 

1.9 Concept of frequency in continuous-time and discrete-time.  

           1)  xa (t)   = A Cos ( t) 

              x (nTs) = A Cos ( nTs) 

                         = A Cos (wn) 

w = Ts 

 

 = rad / sec   w = rad / Sample       

      F = cycles / sec      f = cycles / Sample   

2) A Discrete- time – sinusoid is periodic only of its f is a Rational number.

   x (n+N) = x (n) 

Cos 2 f0 (n+N) = Cos 2 f0 n        

 2 f0N = 2 K =>   f0 = 
N

K
  

Ex:   A Cos (
6


) n 
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        w = 
6


= 2  f   

        f = 
12

1
        N=12 Samples/Cycle ;   Fs= Sampling Frequency;  Ts = 

Sampling Period 

Q. Cos (0.5n) is not periodic    

Q. x (n) = 5 Sin (2n)  

 2 f = 2   => f = 


1
                   Non-periodic 

Q. x (n) = 5 Cos (6 n)  

 2 f = 6    => f = 3            N=1 for K=3   Periodic 

Q. x (n) = 5 Cos 
35

6 n
 

 2 f = 
35

6
   => f = 

35

3
     for N=35 & K=3       Periodic 

Q. x (n) = Sin (0.01 n) 

 2 f = 0.01     => f = 
2

01.0
    for N=200 & K=1       Periodic 

Q. x (n) = Cos (3 n)        for N=2    Periodic 

fo = GCD (f1, f2)   &   T = LCM (T1, T2) ------- For Analog/digital signal 

       

 [Complex exponential and sinusoidal sequences are not necessarily periodic in 

‘n’ with period (
Wo

2
) and depending on Wo, may not be periodic at all] 

 N = fundamental period of a periodic sinusoidal. 

     3. The highest rate of oscillations in a discrete time sinusoid is obtained 

when w =   or -  
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Discrete-time sinusoidal signals with frequencies that are separated by an 

integral multiple of 2  are Identical. 

4. - 
2

Fs
  F   

2

Fs
 

 - Fs   2 F    Fs 

 - 
Ts


       

Ts


 

 -    Ts    

Therefore   -    w    

5. Increasing the frequency of a discrete- time sinusoid does not necessarily 

decrease the period of the signal. 

 x1(n) = Cos (
4

n
)  N=8 

 x2(n) = Cos (
8

3 n
)  N=16     3/8 > 1/4 

  2   f = 3 /8 

  =>   f = 
16

3
 

6. If analog signal frequency = F = 
Ts

1
 samples/Sec = Hz then digital frequency 

f = 1 
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                                   W =   Ts 

        2   f = 2  F Ts   =>    f =1 

 

 

 2 F = 4


   ;        2 f = /4 

 F = 
8

1
  ;  T = 8 ;                                                 f = 

8

1
 N=8    

7. Discrete-time sinusoids are always periodic in frequency. 

 

Q. The signal x (t) = 2 Cos (40 t) + Sin (60 t) is sampled at 75Hz. What is 

the common period of the sampled signal x (n), and how many full periods of x (t) 

does it take to obtain one period of x(n)? 
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F1 = 20Hz  F2 = 30Hz 

f1 = 
1

1

15

4

75

20

N

K
   f2 = 

2

2

5

2

75

30

N

K
  

The common period is thus N=LCM (N1, N2) = LCM (15, 5) = 15 

The fundamental frequency Fo of x (t) is GCD (20, 30) = 10Hz 

And fundamental period T = s
Fo

1.0
1

  

Since N=15 

1sample ---------- sec
75

1
 

15 sample ----------- ?         => S2.0
75

15
    

So it takes two full periods of x (t) to obtain one period of x (n) or GCD (K1, 

K2) = GCD (4, 2) = 2 

Frequency Domain Representation of discrete-time signals and systems 

For LTI systems we know that a representation of the input sequence as a 

weighted sum of delayed impulses leads to a representation of the output as a 

weighted sum of delayed responses. 

 Let x (n) = ejwn 

 y (n) = h (n) * x (n) 

        = 









kk

khknxkh )()()( ejw (n-k) 

        = ejwn 


k

kh )(  e-jwk 

Let H (ejw) = 


k

kh )(  e-jwk is the frequency domain representation of the 

system. 

y (n) = H (ejw) ejwn     ejwn  = eigen function of the system. 

                               H (ejw) = eigen value  

Q. Find the frequency response of 1st order system y (n) = x (n) + a y (n-1)

  (a<1) 
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 Let x (n) = ejwn 

 yp (n) = C ejwn 

 C ejwn = ejwn + a C ejw (n-1) 

 C ejwn [1-ae-jw] = ejwn 

 C = 
]1[

1
jwae

 

          Therefore   H (ejw) = 
]1[

1
jwae

 = 
)sin(cos1

1

wjwa 
 

           )( jweH  = 
2cos21

1

awa 
 

             )
1

()( 1

aCosw

aSinw
TaneH jw


 

 

 

 

Q. Frequency response of 2nd order system y(n) = x(n) - )2(
2

1
ny  

 x (n) = jwne  

 jwn

p
ceny )(  

c jwne = jwne  - )2(

2

1 njwce  
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wCos

wCos
c

245

21620
















 

wCos

wSin
c

22

2
tan 1

c jwne (1+ jwe 2

2

1  ) = jwne    c = 
jwe 2

2

1
1

1


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2. POWER, ENERGY and CONVOLUTION 

 

  

 

 

Continuous Time   ot  = onTs = won Discrete Time 

Periodic   f (t) = 








k

otjk

kec
 

 

Non periodic      

 Ck = 
dtetf

T

T

otjK




0

)(
1

 




T

nTs
jK

enx
NTs

2

)(
1

 

T = N Ts 

t = n Ts   :  dt = Ts           

Periodic     xp(n) =

n
N

jKN

k

kec

21

0





         

 

DTFS 

Periodic Ck = 






1

0

2

)(
1 N

n

nK
N

j

p enx
N



        

                k=0 to N-1 

 

Non-Periodic f(t) = 






 dewF tj)(
2

1

  

 

Non-Periodic F(w) = 

dtetf tj






)(
 

Non – Periodic x(n) = 






2

0

)(
2

1
dwewX jwn

 

Periodic X(w) = 
jwn

n

enx 




 )(  

X(w) = FT of DTS 



 

38 

2.1 Energy and Power 

E = 









nn

nxnxnx )()()( *

2

=  








2

0

* )(
2

1
)( dwewXnx jwn

n

       = 

dwenxwX
n

jwn














)()(
2

1
2

0

*



       = 






2

0

* )()(
2

1
dwwXwX  

                                    = dwwX

2

)(
2

1






  

 

Therefore:     E = 
dwwXnx

n

22

)(
2

1
)( 












  -------- Parsval’s Theorem 

P         = 

2

)(
12

1



 

N

Nn
N

nx
N

Lt
    for non periodic signal 

    =  

21

0

)(
1





N

n

nx
N            for periodic Signal 

  = 

nk
N

jN

k

k

N

n

N

n

eCnx
N

nxnx
N

21

0

*
1

0

1

0

* )(
1

)()(
1 











 
 

  =  
 

















1

0

1

0

2
*

)(
1N

k

N

n

nk
N

j

k enx
N

C



 

Therefore      P =  

21

0






N

k

kC   E = N 

21

0






N

k

Ck  
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Ex: Unit step 

 P = 
 

N

nN

nu
N

Lt
0

2 )(
12

1
 

    =  
2

1

12

1






 N

N
Lt
N

       Power Signal 

 E =   

Ex: x (n) = Ae
jwon

 

 P = 

2

12

1

 

N

Nn

jwon

N

Ae
N

Lt  

    = ........]11[
12

1 2 


A
N

Lt
N

    

    =  
2

2

12

)12(
A

N

NA
Lt
N







     it is Power Signal          and   E =   

Ex: x (n) = n u(n)  neither energy nor power signal 

Ex: x (n) = 3 (0.5)n  n0 

 E = 
Jnx

n

n

n

12
25.01

9
)25.0(9)(

0

2 










      note: [



 


0 1

1

n

n


 ] 

Ex: x (n) = 6 Cos
4

2 n
  whose period is N=4 x (n) = {

0,6,0,6 


} 

 P = 
Wnx

n

18]3636[
4

1
)(

4

1 3

0

2 


 

Ex: x (n) = 6 e 4

2 n
j


  whose period is N = 4 
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 P = 
Wattsnx

n

36]36363636[
4

1
)(

4

1
23

0




 

 

2.2 DISCRETE CONVOLUTION 

 

 

 It is a method of finding zero input response of  linear Time Invariant 

system. 

Ex: x(n) = u(n) 

       h(n) = u(n) 

y(n) = 





k

knuku )()(
 

 u(k) = 0  k<0 
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 u(n-k) = 0  k>n 

   



n

k

knuku
0

)()(
 =  



n

k 0

1  = (n+1) u(n) = r(n+1) 

Q. x(n) = an u(n)   and  h(n) = an u(n)   a<1 find y(n) 

     y(n) = 


n

k 0
ak an-k  =  an (n+1) u(n)  

Q. x(n) = u(n)   and  h(n) =  n u(n)    <1 find y(n) 

     y(n) = 


k
 k   u(k) u(n-k)   = 



n

k 0
 k =  (1- n+1) / (1- ) 

The convolution of the left sided signals is also left sided and the convolution 

of two right sided also right sided. 

Q. x(n) = rect (
N

n

2
) = 1  n N 

                 = 0    else where 

   h(n) = rect (
N

n

2
) 

   y(n)  = x(n) * h(n) 

            = [u (n+N) – u (n-N-1)] * [u (n+N) – u (n-N-1)] 

 = u (n+N) * [u (n+N) – u (n-N-1)] – u (n-N-1)* [u (n+N) – u (n-N-1)] 

 = u (n+N) * u (n+N) – 2 u (n+N)*u (n-N-1)] + u (n-N-1) * u (n-N-1) 

 = r(n+2N+1) – 2r(n) + r(n-2N-1) 

 = (2N+1) Tri (
12 N

n
) 

Tri (
N

n
) = 1- 

N

n
 for n N 

   = 0       elsewhere. 
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Q. x(n) = {2,-1,3} 

    h(n) = { 1,2,2,3}    Graphically  Fold-shift-multiply-sum 

    y(n) =  

 1 2 2 3 

2 2 4 4 6 

-1 -1 -2 -2 -3 

3 3 6 6 9 

y(n) = { 2,3,5,10,3,9} 

Q. x(n) = {4,

1 ,3}              h(n) = { 2,5,


0 ,4}                                                 

 2 5 0 4 

4 8 20 0 16 

1 2 5 0 4 

3 6 15 0 12 

 y(n) =  { 8,22,11,31,4,12}          Note that convolution starts at n=-3 

                             ↑          
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Q)    

h(n): 2 5 0 4 

x(n): 4 1 3 

     _________________________________ 

  8 20 0 16 

   2 5 0 4 

    6 15 0 12 

 ____________________________________ 

y(n): 8 22 11 


31  4 12     

Q. Convolution by sliding step method:    h(n) = 

2 , 5, 0, 4 ; x(n)= 


4 , 1, 3           

     

i)         2  5  0  4    ii)         2  5  0  4 

 3  1  4                   3  1  4 

___________________                    _________________________ 

         y(0) = 8             2    20       y(1) = 2+20 = 

22 

 

 

iii)         2  5  0  4    iv)         2  5  0  4 

         3  1  4                  3  1  4 

________________________                   _______________________ 

               6  5  0      y(2) = 11                        15   0  16      y(3) = 31 

 

v)         2  5  0  4    Vi)         2  5  0  4 

        3  1  4                                 3  1  4 

________________________             

 _______________________ 
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             0   4     y(4) = 4                       12       y(5) = 12 

If we insert zeros between adjacent samples of each signal to be convolved, 

their convolution corresponding to the original convolution sequence with zeros 

inserted between its adjacent samples. 

Q. h(n) = 

2 , 5, 0, 4 ; x(n)= 


4 , 1, 3                   X(z) = 2z3+5z2+4  ; X(z) = 

4z2+z+3 

     Their product  Y(z) = 8z5+22z4+11z3+31z2+4z+12 

                  y(n) = 

8 ,22,11,31,4,12                

 h(n) = 

2 , 0, 5, 0, 0, 0, 4 ; x(n) = 4, 0, 1, 0, 3     

 H(z) = 2z6+5z4+ 4    ; X(z) = 4z4+z2+3 

 Y(z) = 8z10+22z6+31z4+4z2+12    y(n) = { 8,0,22,0,11,0,31,0,4,0,12} 

Q. Compute the linear convolution of h(n)={1,2,1} and x(n) = { 1, -1, 2, 1 ,2, -

1, 1, 3, 1} using overlap-add and overlap-save method. 

h (n):   1 2 1 

x (n):   1 -1 2 1 2 -1 1 3 1 

x1(n):   1 -1 2  

x2(n):      1 2 -1 

x3(n):         1 3 1 

____________________________________________________________ 

y1(n) = (h (n)*x1(n))1    1 1 3 2 

y2(n) =      1 4 4 0 -1 

y3(n) =         1 5 8 5

 1 

y(n) =            {  

1  1 1 4 6 4 1 4 8 5

 1 } OVER LAP and SAVE method 

h (n):  1 2 1 0 0    (N2=3) 

x1(n):  1 -1 2 1 2  (N3+N2-1) = 5 
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x2(n):     1 2 -1 1 3  

x3(n):        1 3 1 0

 0 

y1(n) =  1 1 1 4 6 5  2 

y2(n) =       1  4 4 1 4 7  3 

y3(n) =           1  5 8    5

 1 

y(n)  =  { 1 1 1 4 6           4 1 4  8    5   

1} 
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3. DISCTRETE FOURIER SERIES 

Q. Determine the spectra of the signals  

a.  x(n) = Cos 2  n 

  wo = 2   

  fo = 
2

1
 is not rational number 

    Signal is not periodic. 

  Its spectra content consists of the single frequency 

b.  x (n) = Cos 
n

3


 after expansion x(n)={ 1,0.5,-0.5,-1,-0.5,0.5} 

  fo = 
6

1
       N=6 

 Ck = 

nkj

n

enx 6

25

0

)(
6

1






   k=0 to 5 

 Ck = 












 kjkj
kj

kjkj

exexexexexx 3

5

3

4

3

2

3 )5()4()3()2()1()0(
6

1






 

 For k=0      Co =  )5()4()3()2()1()0(
6

1
xxxxxx   = 0 

 Similarly  

 K=1          C1 = 0.5  , C2 = 0 = C3 = C4 , C5 = 0.5 

 

Or 

x (n)  = Cos

nj

en 6

2

2

1

3




 + 

nj

e 6

2

2

1




= 


5

0

6

2

k

knj

k eC


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  = Co+C1 e

nj
6

2

+C2e

nj
6

4

+ C3 e

nj
6

6

+C4 e
nj

6

8

+C5 e

nj
6

10

  

  By comparison   C1=
2

1
    

  Since  e

nj
6

2


 = e

nj 






 

6

65
2

 = e
6

10 n
j



           

            
2

1
5 C  

c. x (n) = {1,1,0,0} 

 Ck= 


3

0

4
2

)(
4

1

n

nk
j

enx


  k=0, 1, 2, 3 

     =  










2

2

11
4

1
k

j

e


 

2

1
0
c  ;  jc  1

4

1
1 ;  0

2
c ;  jc  1

4

1
3  

2

1
oC    &     C0 = 0 

4

2
1
c   &   C1 = 4


 

0
2
c      &    C2    undefined 

4

2
3
c   &  C3 = 

4


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3.1 PROPERTIES OF DFS 

1. Linearity 

DFS   11 )(~
kCnx   

DFS   22 )(~
kCnx   

DFS 
  2121 )(~)(~

kk bCaCnxbnxa 
 

2. Time Shifting 

DFS   k
N

mk
j

Cemnx
2

)(~ 

  

3. Symmetry 

DFS   kCnx  ** )(~
         Ck = 






1

0

2

)(~1 N

n

N

nk
j

enx
N



 

DFS
  kCnx ** )(~ 

  






1

0

2

)(~
N

k

nk
N

j

keCnx


 

DFS
     kekk CCC

nxnx
DFSnx 







 
 

*
*

2

1

2

)(~)(~
)(~Re

 

DFS

     kokk CCC
nxnx

DFSnxj 






 
 

*
*

2

1

2

)(~)(~
)(~Im

 

If )(~ nx is real then 
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






 


2

)(~)(~
)(~

* nxnx
nxe  








 


2

)(~)(~
)(~

* nxnx
nxo  

DFS
     kkke CCCnx Re

2

1
)(~ * 

 

DFS
     kkko CjCCnx Im

2

1
)(~ * 

 

Periodic Convolution 

 DFS 21

1

0

21 )(~)(~
kk

N

m

CCmnxmx 












 

 If x(n) is real 

 kk CC  *

 

 ]Re[]Re[ kk CC   

 ]Im[]Im[ kk CC   

 
kk CC   

 kk CC 
 

3.2 PROPERTIES OF FT (DTFT) 

1. Linearity 

 y (n) = a x1 (n) + b x2 (n) 

 Y (e jw ) = a X1(e
jw ) + b X2(e

jw ) 
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2. Periodicity 

 H (e
)2( wj

) = H (e jw ) 

3. For Complex Sequence 

 h (n) = hR(n) + j hI(n) 

 H (e jw ) = 





-n

IR Sin(wn)] j - [Cos(wn) ] (n)h j  (n)h [  

 





-n

IR (n)Sin(wn)hCos(wn) (n)h [ = HR (e
jw

) 

 





-n

RI (n)Sin(wn)hCos(wn) (n)h [ = HI (e
jw

) 

 ) (e H jw

= )()( jw

I

jw

R ejHeH   

   = )()()()( *22 jwjwjw

I

jw

R eHeHeHeH   

  







 

)(

)(
tan)( 1

jw

R

jw

Ijw

eH

eH
eH  

4. For Real Valued Sequence 

 )( jweH  = 






n

jwnenh )(
 

            =  









n n

wnSinnhjwnCosnh )()()()(  

            = )()( jw

I

jw

R ejHeH  -------------------- (a) 

 )( jweH 
 = 



n

jwnenh )(
 

            =  









n n

wnSinnhjwnCosnh )()()()(  
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            = )()( jw

I

jw

R ejHeH   -------------------- (b) 

From (a) & (b)  

 )()( jw

R

jw

R eHeH   

 )()( jw

I

jw

I eHeH   

  Real part is even function of w 

 Imaginary part is odd function of w 

  )()( * jwjw eHeH 
 

 =>

 )H(e))H(e(eH) (e )H (e H ) (e H -jw-jw-jw*jw*jwjw   

  Magnitude response is an even function of frequency 

) (e H
) (eH

) (eH
tan

) (eH

) (eH
tan) (e H jw

jw

R

jw

I1-

jw-

R

-jw

I1-jw- 


















  

      Phase response is odd function. 

5. FT of a delayed Sequence 

 FT [h (n-k)] = 





n

jwneknh )(
   

    Put   n-k = m 

       = 






m

kmjwemh )()(
 

       = 
jwke 







m

jwmemh )( = H (e
jw

) 

jwke 
 

6. Time Reversal 

 x (n)   X (w) 

 x (-n)  X (-w) 
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       F T [x (-n)] = 





n

jwnenx )(
 

   Put  –n = m 

  
)()( wXemx

m

jwm 



 

7. Frequency Shifting 

 x(n) 
njwoe   X (w-wo) 

 F T [x (n) 
njwoe  ] = 



n
x (n) 

njwoe e-jwn 

    = 


n
x (n) 

nwwj oe
)( 

   = X (w-wo) 

8. a. Convolution 

 x1 (n) *  x2 (n)  X1(w) X2(w) 

 


n
[x1 (n) * x2 (n) ]  e-jwn   = 



n




k
[ x1 (k) x2 (n-k) ]  e-jwn    

      Put n-k = m 

             = 


n
 x1 (k) 



m
[x2(m)] e-jw (m+k) 

                     = 


n
 x1 (k) e-jwk   



m

[x2(m)] e-jwm 

              = X1(w) X2(w) 

      b.  
2

1
[X1(w) * X2(w)]  x1 (n) x2 (n) 

9. Parsevals Theorem 
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 


n
 x1(n) x2

*
 (n) = 






2

1
[X1(w) X2

*(w)] dw 

    n x (n)   j dw

wdX )(
 

10. F T of Even Symmetric Sequence 

 H (e
jw

) = 


n
h (n) e-jwn 

                = 




1

n
h (n) e-jwn + h (0) +



1n
h (n) e-jwn  

            Let n = -m 

            = 


1m
h (-m) ejwm + h (0) +



1n
h (n) e-jwn  

   Let h (-m) = h (m) for even 

 Therefore = h (0) + 2 


1n

h (n) Cos (wn)  is a real valued function of 

frequency 

 0                   ;   H (e jw ) >0 

    ;   H (e jw ) <0 

11. F T of Odd Symmetric Sequence 

 For odd sequence h (0) = 0 

 H (e jw ) = 


1n
h (n) [e-jwn - ejwn ] 

            = -j 2 


1n
h (n) Sin (wn) HI (e

jw )       is a imaginary valued 

function of freq. and a odd function of w 

 i.e,  H (e jw ) = - H (e jw ) 
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   ) (e H jw
  =  HI (e

jw )      for    HI (e
jw ) > 0  

         = - HI (e
jw )      for    HI (e

jw ) < 0 

 
2

)(


 jweH      For w over which       HI (e
jw ) > 0 

    = 



2
         for w over which        HI (e

jw ) < 0 

12.   x(0) = 




2

0

)(
2

1
dwwX

          Central Co-ordinates 

 X (0) = 


n

nx )(  

13.   Modulation 

 Cos (won) x (n)  
2

)(

2

)( 00 wwXwwX 



 

3.3 FOURIER TRANSFORM OF DISCRETE TIME SIGNALS 

X (w) = 


n
x (n) e-jwn 

 F T exists if  


n
 

)(nx
 

The FT of h (n) is called as Transfer function 

Ex:  h (n) = 
3

1
      for -1 1 n  

               = 0         otherwise

Sol: H (e jw ) = 



1

13

1

n

jwne
=  jwjw ee 1

3

1
 =  )(21

3

1
wCos      
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Ex: h (n) = an u (n) 

 H (e jw ) = 






0n

jwnnea
 

           = 






0

)(
n

njwae  =  jwae1

1
 

Q. x(n) = n  n u(n)   <1 

 n  n u(n)         








  jwedw

d
j

1

1
  

  = 2)1( jw

jw

e

e







 

 Hint:  n u(n)  






0n

jwnne = 






0

)(
n

njwe
 =  jwe1

1
 

Q. x(n) =  n  0nN 

 Or  

 x(n) =  n [ u(n) – u(n-N)] 

         =  n u(n) –  N  n-N u(n-N) Using Shifting Property 

w  

0 1 

2


 

3

1
 

   -
3

1
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 X(w) = 
]

1
[

1

1
jw

jwN
N

jw e

e

e 



 


 


  

        = jw

Njw

e

e












1

)(1
 Ans 

Q. x(n) = 
n

  1  two sided decaying exponential 

 x(n) =  n u(n) +  -n u(-n) - )(n   using folding property 

      = 1
1

1

1

1





  jwjw ee 
 = 2

2

21

1









Cosw
 

Q. x (n) = u (n)  Since u (n) is not absolutely summable    

              we know that    u (t)   jw
w

1
)( 

 

Similarly    X (w) = jwe1

1
 + )(w
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4. DFT (Frequency Domain Sampling) 

 The Fourier series describes periodic signals by discrete spectra, where as the 

DTFT describes discrete signals by periodic spectra. These results are a consequence of the 

fact that sampling on domain induces periodic extension in the other. As a result, signals that 

are both discrete and periodic in one domain are also periodic and discrete in the other. This 

is the basis for the formulation of the DFT. 

 Consider aperiodic discrete time signal x (n) with FT X(w) = 






n

jwnenx )(  

Since X (w) is periodic with period 2 , sample X(w) periodically with N equidistance 

samples with spacing 
N

w



2

 . 

 

K = 0, 1, 2…..N-1 

Kn
N

j

n

enx
N

k
X




2

)(
2 











 

The summation can be subdivided into an infinite no. of summations, where each sum 

contains  

 








 




Kn

N
j

Nn

enx
N

k
X




21

)(............
2

Kn
N

jN

n

enx

21

0

)(




 +

..................)(

212







Kn

N
jN

Nn

enx


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   = 


l

Kn
N

jNlN

lNn

enx

21

)(





 

   Put n = n-lN 

   = 



l

)(
21

0

)(
lNnK

N
jN

n

elNnx




 



 

   = 




1

0

N

n

Kn
N

j

l

elNnx

2

)(




 
 

 X(k) = 




1

0

N

n
xp(n) 

Kn
N

j

e
2



 

We know that xp(n) =  




1

0

N

k
Ck 

Kn
N

j

e

2

n= 0 to N-1 

 Ck= N

1 




1

0

N

n
xp(n) 

Kn
N

j

e
2



 k=0 to N-1 

Therefore  Ck=
N

1
X(k)  k=0 to N-1 

IDFT ------------ xp (n) = 
N

1 




1

0

N

k
X(k) 

Kn
N

j

e

2

  n = 0 to N-1 

This provides the reconstruction of periodic signal xp(n) from the samples of spectrum 

X(w). 

The spectrum of aperiodic discrete time signal with finite duration L<N, can be exactly 

recovered from its samples at frequency Wk=
N

k2
. 

Prove:  x(n) = xp (n)  0nN-1 
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Using IDFT 

x (n) = 
N

1





1

0

N

k

X(k) 
Kn

N
j

e

2

 

X (w)  = 




1

0

N

n

[
N

1





1

0

N

k

X (k) 
Kn

N
j

e

2

]  e-jwn 

 

= 




1

0

N

k

X (k) [ 
N

1
 





1

0

N

n

)
2

( K
N

wjn

e




 ]    

If we define    p(w)  = 
N

1





1

0

N

n

 e-jwn 

   = 
N

1
















jw

jwN

e

e

1

1
 = 








 


2

1

2

2
N

jw

e
w

NSin

wN
Sin

 

Therefore: X (w) = 




1

0

N

k

X (k) P(w-
N

k2
) 

 At w =
N

k2
     P (0) =1 

And P (w-
N

k2
) = 0 for all other values 

X (w) = 




1

0

N

k

X(k)  =  




1

0

N

k

X(
N

k2
) 

 

Ex:  x(n) = an u(n)  0<a<1 

The spectrum of this signal is sampled at frequency Wk=
N

k2
. k=0, 1…..N-1, determine 

reconstructed spectra for a = 0.8 and N = 5 & 50. 

X (w) = 
jwae1

1
 

 X (wk) = 
k

N
j

ae

2

1

1





  k=0, 1, 2… N-1 

 

xp (n) = 








0

)(
l

lNn

l

aLNnx  
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  = 
N

n

l

lNn

a

a
aa






 10

  0nN-1 

 

Aliasing effects are negligible for N=50 

 

 
 

If we define aliased finite duration sequence x(n) 

)()(ˆ nxnx p   0nN-1 

        = 0  otherwise 

 = 





1

0

)(
N

n

jwn

p enx  

 = 








1

0 1

N

n

jwn

N

n

e
a

a

 
 = 









1

0

)(
1

1 N

n

njw

N
ae

a
 

 





















jw

jwNN

N ea

ea

a
wX

1

1

1

1
)(ˆ

 










N

K
X

2ˆ





















 



N

K
j

N
N

k
j

N

N

ea

ea

a 



2

2

1

1

1

1
 







1

0

)(ˆ)(ˆ
N

n

jwnenxwX
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     = 
N

kj

ae

2

1

1




 = X 








N

K2
 

 

thewXwXAlthough ),()(ˆ   samples at Wk=
N

k2
 are identical. 

 

Ex: X (w) = 
jwea 1

1
 & X (k) = 

k
N

j

ea

2

1

1





 

 Apply IDFT  

 x (n)  = 


 



















1

0
2

2

1

1 N

k N

k
j

N

nk
j

ae

e

N 



 using Taylor series expansion 

  = 
N

kr
j

r

r
N

k

N

nk
j

eae
N

 2

0

1

0

2
1 







 







 

  = 
















1

0

)(
2

0

1 N

k

N

rn
kj

r

r ea
N



 

 = 0   except   r = n+mN  

  x (n) = 






0m

mNna     =  


0

)(
m

mNn aa  

   = N

n

a

a

1
 

The result is not equal to x (n), although it approaches x (m) as N becomes  . 

 

Ex: x (n) = {0, 1, 2, 3} find X (k) =? 

 X (k) =  


3

0

4

2

)(
n

n
k

j

enx



 

 X (0) = 


3

0

)(
n

nx  = 0+1+2+3 = 6 
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 X (1) = 


3

0

4

2

)(
n

nj

enx



 = -2+2j 

 X (2) = -2 

 X (3) = -2-2j 

4.1 DFT as a linear transformation 

Let 
N

j

N eW

2


  

X (k) = 




1

0

)(
N

n

nk

NWnx
  k = 0 to N-1 

x (n) = N

1
 






1

0

)(
N

k

nk

NWkX
 n = 0, 1…N-1 

Let xN = 



































)1(

)1(

)0(

Nx

x

x

 XN = 



































)1(

)1(

)0(

NX

X

X

 

WN = 







































)1)(1()1(21

)1(242

)1(21

1

1

1

1111

NN

N

N

N

N

N

N

NNN

N

NNN

WWW

WWW

WWW

 

 

The N point DFT may be expressed in matrix form as  

     DFT       IDFT 

XN = WN   xN   xN   = NN XW
N

*1
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NNN XWx 1  

    1. 
K

N

NK

N WW 
 

 
*1 1

NN W
N

W  

  2. 
K

N

N
K

N WW 


2
 

 

Ex:  x (n) = {0, 1, 2, 3} 

DFT W4 = 



















9

4

6

4

3

4

6

4

4

4

2

4

3

4

2

4

1

4

1

1

1

1111

WWW

WWW

WWW
=    



















1

4

2

4

3

4

2

4

0

4

2

4

3

4

2

4

1

4

1

1

1

1111

WWW

WWW

WWW

 = 

























jj

jj

11

1111

11

1111

 

X4 = 44 xW  =  

























jj

jj

11

1111

11

1111



















3

2

1

0

   =   

























j

j

22

2

22

6

 

IDFT 

4x  = NN XW *

4

1
   =  

4

1
 

























jj

jj

11

1111

11

1111

     

























j

j

22

2

22

6

   = 



















3

2

1

0

  Ans 

Q. 

x (n) = { }5.0,1


  

h (n) = { 1,5.0


}
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Find y (n) = x (n)   h (n) using frequency domain. Since y (n) is periodic with period 2. 

Find 2-point DFT of each sequence. 

X (0) = 1.5  H (0) = 1.5 

X (1) = 0.5     H (1) = -0.5 

Y (K) = X (K) H (K)  

Y (0) = 2.25 Y (1) = -0.25 

Using IDFT    y (0) = 1; y (1) = 1.25 







k

knxkhnxnhny )(~)(
~

)(~)(
~

)(~
 

   =  






k

knhkx )(
~

)(~
 

 
)0(~y

   = 





k

khkx )(
~

)(~
 

  = )1(
~

)1(~)0(
~

)0(~  hxhx  

  = 1 * 0.5 + 0.5 * 1 = 1 

)1(~y    = 





k

khkx )1(
~

)(~
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  = )0(
~

)1(~)1(
~

)0(~ hxhx   

  = 1 * 1 + 0.5 * 0.5 = 1.25 

)2(~y
   = 






k

khkx )2(
~

)(~
 

  = )1(
~

)1(~)2(
~

)0(~ hxhx   

  = 1 * 0.5 + 0.5 * 1 = 1 

)(~ ny
   = {1, 1.25, 1, 1.25…..} 

Q. Find Linear Convolution of same problem using DFT 

Sol. The linear convolution will produce a 3-sample sequence. To avoid time 

aliasing we convert the 2-sample input sequence into 3 sample sequence by padding with 

zero. 

For 3- point DFT 

X (0) = 1.5    H (0) = 1.5 

X (1) = 1+0.5 
3

2
j

e


   H (1) = 0.5+ 
3

2
j

e


 

X (2) = 1+0.5 
3

4
j

e


   H (2) = 0.5+ 
3

4
j

e


   

Y (K) = H (K) X (K) 

Y (0) = 2.25 

Y (1) = 0.5 + 1.25 
3

2
j

e


+ 0.5 
3

4
j

e


 

Y (2) = 0.5 + 1.25
3

4
j

e


 + 0.5 
3

8
j

e


 

Compute IDFT 

 y(n) = 


2

0

3

2

)(
3

1

k

kn
j

ekY


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 y(0) = 0.5 

 y(1) =1.25 

 y(2) =0.5 

y(n) = { 0.5, 1.25, 0.5} Ans 

4.2 PROPERTIS OF DFT 

1) Linearity 

If  h(n) = a h1(n) + b h2(n) 

 H (k) = a H1(k) + b H2(k) 

2) Periodicity  H(k) = H (k+N) 

3) 





m

mNnhnh )()(
~

 

4)  y(n) = x(n-n0) 

Y (k) = X (k) e
N

kn
j 02



 

5) y (n) = h (n) * x (n)  

Y (k) = H (k) X (k) 

6) y (n) = h(n) x(n) 

Y (k) =  )()(
1

kXkH
N

  

7) For real valued sequence  







1

0

2
)()(

N

n

R
N

kn
CosnhkH


 







1

0

2
)()(

N

n

I
N

kn
SinnhkH


 

a. Complex conjugate symmetry 

h (n) H(k) = H*(N-k) 

h (-n) H(-k) = H*(k) = H(N-k) 
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i. Produces symmetric real frequency components and anti symmetric 

imaginary frequency components about the 2

N
DFT 

ii. Only frequency components from 0 to 
2

N
 need to be computed in order 

to define the output completely. 

 

b. Real Component is even function 

HR (k) = HR (N-k) 

c. Imaginary component odd function 

HI (k) = -HI (N-k) 

 

d. Magnitude function is even function 

)()( kNHkH   

e. Phase function is odd function 

)()( kNHkH   

f. If h(n) = h(-n) 

H (k) is purely real 

g. If h(n) = -h(-n) 

H (k) is purely imaginary 

8. For a complex valued sequence 

x*(n) X*(N-k) = X*(-k) 

DFT [x(n)] =    X(k)  =




1

0

)(
N

n

nk

NWnx  

  X*(k)   = 





1

0

* )(
N

n

nk

NWnx  

X*(N-k)   = 




1

0

* )(
N

n

nk

NWnx  = X*(-k) 

 DFT [x*(n)] = 




1

0

* )(
N

n

nk

NWnx = X*(N-k)    proved 

Similarly DFT [x*(-n)] = X*(k) 
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9.Central Co-ordinates 

x (0) = 




1

0

)(
1 N

k

kX
N

 x (
2

N
) = 






1

0

)()1(
1 N

k

k kX
N

 N=even 

X (0) = 




1

0

)(
N

n

nx            X (
2

N
) = 






1

0

)()1(
N

n

n nx   N=even 

10. Parseval’s Relation 

N 









1

0

2
1

0

2
)()(

N

k

N

n

kXnx
 

Proof:  LHS      




1

0

* )()(
N

n

nxnxN  

   = N 
















nk

N

N

k

N

m

WkX
N

nx
1

0

*
1

0

)(
1

)(  

   =  
















nk

N

N

n

N

k

WnxkX
1

0

1

0

* )()(  

    = 




1

0

* )(
N

k

kX
X (k)   =   

21

0

)(




N

k

kX  

11.Time Reversal of a sequence 

)())(()())(( kNXkXnNxnx NN 
 

Reversing the N-point seq in time is equivalent to reversing the DFT values. 

DFT   )( nNx  







1

0

2

)(
N

n

n
N

kj

enNx



 

   Let m=N-n 

  = 




1

0

)(
2

)(
N

n

mN
N

kj

emx


 m=1 to N = 0 to N-1 

  = 




1

0

2

)(
N

m

m
N

kj

emx


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  = 





1

0

)(
2

)(
N

m

kN
N

mj

emx



 = X(N-k) 

12.Circular Time Shift of a sequence 

l
N

kj

N ekXlnx

2

)()(



  

  







1

0

2

)()(
N

n

n
N

kj

NN elnxlnxDFT



 

= 







1

0

2

)(
l

n

n
N

kj

N elnx



+ 







1 2

)(
N

ln

n
N

kj

N elnx



 

= 







1

0

2

)(
l

n

n
N

kj

elnNx



+ 







1 2

)(
N

ln

n
N

kj

elnNx



 

  Put N+n-l = m 

= 





1 )(

2

)(
N

lNm

lm
N

kj

emx



+ 







lN

Nm

lm
N

kj

emx
12 )(

2

)(



 

N to 2N-1-l is shifted to N    0 to N-1-l 

Therefore 0 to N-1 = (0 to N-1-L) to ( N-L to N-1) 

Therefore 





1

0

)(
2

)(
N

m

lm
N

k
j

emx



 

=





1

0

2

)(
N

m

m
N

k
j

emx

 l
N

k
j

e

2


 

= X(k) 

l
N

k
j

e

2


     RHS 

13.Circular Frequency Shift 
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N

n
N

l
j

lkXenx )()(

2





 

DFT 






 n
N

l
j

enx

2

)(  = 




1

0

22

)(
N

n

n
N

k
jn

N

l
j

eenx



 

       = 




1

0

)(
2

)(
N

n

lk
N

n
j

enx



 = NlkX )(      RHS 

14.x(n)X(k) 

{x(n), x(n), x(n)…….x(n)} M X (
m

k
) 

(m-fold replication) 

)}(),......(),({)( kXkXkX
m

n
x 

   (M- fold replication)   

2, 3, 2, 1  8, -j2, 0, j2 

Zero interpolated by M  

{2, 3, 2, 1, 2, 3, 2, 1, 2, 3, 2, 1}  {24, 0, 0, -j6, 0, 0, 0, 0, 0, j6, 0, 0} 

15.Duality 

x(n)X(k) 

X(n)N x(N-k)  10  NK  

 x(n) = 




1

0

2

)(
1 N n

N
j

eX
N 




 

x(N-k) = 




1

0

)(
2

)(
1 N kN

N
j

eX
N 




 

 = 




1

0

2

)(
1 N k

N
j

eX
N 




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N x(N-k) = 




1

0

2

)(
N k

N
j

eX





 

    = 




1

0

2

)(
N

n

n
N

k
j

enX


  = DFT [ X(n) ]    LHS proved 

16.Re[x(n)] 
)(kX ep    

)(kX ep = 
 NN kXkX ))(())((

2

1 * 
  

       j Im[x(n)] 
)(kX op   

)(nxep Re[X(k)]   

 
)(nxop j Im[X(k)]  

)(nxep Even part of periodic sequence =  Nnxnx ))(()(
2

1
  

)(nxop Odd part of periodic sequence =  Nnxnx ))(()(
2

1
  

Proof: X(k) = 




1

0

)(
N

n

nk

NWnx
 

 X(N-k) = N

N

n

nk

N kXWnx ))(()(
1

0








 

 X*(k) = 





1

0

* )(
N

n

nk

NWnx
 

 X*(N-k) = N

N

n

nk

N kXWnx ))(()( *
1

0

* 



 



 

72 

 
 






 1

0

*
*

)()(
2

1

2

))(())(( N

n

nk

N
NN Wnxnx

kXkX
  

                                                   = DFT of [Re[x (n)]]     LHS 

17.




1

0

*

21 )()(
N

n

nxnx  = 
N

1 




1

0

*

21 )()(
N

k

kXkX
 

Let y(n) = )()( *

21 nxnx  

 Y(k) =  )()(
1 *

21 kXkX
N

  

          =  )()(
1 *

21

1

0

lkXlX
N

N

l





 

             Y(0) =  )()(
1 *

21

1

0

lXlX
N

N

l






 

 Using central co-ordinate theorem 

 Y(0) = 




1

0

*

21 )()(
N

n

nxnx
 

Therefore 




1

0

*

21 )()(
N

n

nxnx
 = 

N

1 




1

0

*

21 )()(
N

k

kXkX
 

QUESTIONS 

1 Q. (i) {1,0,0,…….0} (impulse) {1,1,1…..1} (constant) 

 (ii) {1,1,1,……1} (constant) ) {N,0,0,…….0} (impulse) 

 (iii) 
N

kj

N
n

e






2

1

1





   










































1

0
2

2
2

1

)(1N

k N

kj

NN

kj
n

N

kj

e










 

 (iv) Cos 








N

nko2  )(()(
2

oo kNkkk
N

 
  

                                                      (Impulse pair) 
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      Or        Cos (2 nf ) = Cos (wn) 

Sol.   x(n)  = 2

)22

N

nkj

N

nkj oo

ee

 


 

         =  2

)(22

N

kNnj

N

nkj oo

ee







 

 We know that 1  N )(k  

  )()(

2

KoKXenx N

nKoj





 

 x(n)    
 )(()(

2
oo kNkkk

N
 

 

I. Inverse DFT of a constant is a unit sample. 

II. DFT of a constant is a unit sample. 

2 Q. Find 10 point IDFT of  

 X(k) = 3   k=0 

         = 1          1k9 

Sol.  X(k) = 1+2 )(k  

     =  1 + 10
5

1
)(k  

      x(n) = 5

1
+ )(n      Ans 

3 Q. Suppose that we are given a program to find the DFT of a complex-valued sequence 

x(n). How can this program be used to find the inverse DFT of X(k)? 

X(k) = 

nk

N

N

n

Wnx




1

0

)(
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x(n) = 
N

1
nk

N

N

k

WkX 





1

0

)(
 

N x*(n) = 

nk

N

N

k

WkX




1

0

* )(
 

  

1. Conjugate the DFT coefficients X(k) to produce the sequence X*(k). 

2. Use the program to fing DFT of a sequence X*(k). 

3. Conjugate the result obtained in step 2 and divide by N. 

4 Q. xp(n) = {

1 , 2, 3, 4, 5, 0, 0, 0} 

 (i) fp(n) = xp(n-2) = {

0 , 0, 1, 2, 3, 4, 5, 0} 

 (ii) gp(n) = xp(n+2) = {

3 , 4, 5, 0, 0, 0, 1, 2} 

 (iii) hp(n) = xp(-n) = {1, 0, 0, 0, 5, 4, 3, 2} 

5 Q. x(n) = {1, 1, 0, 0, 0, 0, 0, 0}  n = 0 to 7  Find DFT. 

 X(k) = 


1

0

8

2

)(
n

n
kj

enx



 = 1 + 
4

kj

e



     k = 0 to 7 

 X(0) = 1+1 = 2 

 X(1) = 1+ 
4

j

e



 = 1.707 - j 0.707 

 X(2) = 1+ 
2

j

e



 = 1- j  

 X(3) = 1+ 
4

3j

e



 = 0.293 - j 0.707 

 X(4) = 1-1 = 0 

 By conjugate symmetry X(k) = X*(N-k) = X*(8-k) 

  X(5) = X*(3) = 0.293 + j 0.707 
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 X(6) = X*(2) = 1+j 

 X(7) = X*(1) = 1.707 + j 0.707 

  X(k) = {

2 , 1.707 - j 0.707, 0.293 - j 0.707, 1-j, 0, 1+j, 0.293 + j 0.707, 1.707 + j 

0.707 } 

6 Q. x(n) = {1, 2, 1, 0} N=4 

 X(k) = {4, -j2, 0, j2} 

 (i) y(n) = x(n-2) = {1, 0, 1, 2} 

      Y(k) = X(k) e
)2(

4

2



no

kj 

= 4,  j2,  0,  -j2 

 (ii) X(k-1) = {j2, 4, -j2, 0} 

       IDFT     x(n) 

ln
2

N

j

e



  

       =     x(n) 2

nj

e



= {1, j2, -1, 0} 

 (iii) g(n) = x(-n) = 1, 0, 1, 2 

        G(k) = X(-k) = X*(k) = {4, j2, 0, -j2} 

 (iv) p(n) = x*(n) = {1, 2, 1, 0} 

       P(k) = X*(-k) = {4, j2, 0, -j2}* = {4, -j2, 0, j2} 

 (v) h(n) = x(n) x(n) 

              = {1, 4, 1, 0} 

     H(k) =  )()(
4

1
kXkX   =  

4

1
[ 24, -j16, 0, j16] = {6, -j4, 0, j4} 

 (vi) c(n) = x(n)x(n)  

    = {1, 2, 1, 0} {1, 2, 1, 0} = {2,4,6,4} 

      C(k) = X(k)X(k) = {16, -4, 0, -4} 

 (vii) s(n) = x(n) x(n) = {1, 4, 6, 4, 1, 0, 0} 

S(k) = X(k) X(k) = {16, -2.35- j 10.28,  -2.18 + j 1.05, 0.02 + j 0.03, 0.02 - j 0.03, -2.18 - 

j 1.05,  -2.35 + j 10.28} 

 (viii)   60141)(
2

nx  
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          4

1
  6]4416[

4

1
)(

2
kX

  

  



 

77 

5.FFT 

X(k)    = 




1

0

)(
N

n

nk

NWnx   10  NK  

 = 




1

0

N

n

{ Re[x(n)] + j Im[x(n)] } { Re(
nk

NW ) + j Im(
nk

NW ) } 

= 




1

0

N

n

Re[x(n)] Re(
nk

NW ) - 




1

0

N

n

Im[x(n)] Im(
nk

NW ) +  

                    j{




1

0

N

n

Im[x(n)] Re(
nk

NW ) +   Im(
nk

NW )Re[x(n)]} 

 Direct evaluation of X(k) requires 
2N  complex multiplications and N(N-1) complex 

additions. 

 4 
2N  real multiplications 

 { 4(N-1) + 2} N = N(4N-2) real additions 

The direct evaluation of DFT is basically inefficient because it does not use the symmetry 

& periodicity properties 


2

N
K

NW
nk

NW     &    NK

NW
nk

NW    

5.1 DITFFT: 

X(k) = 




1
2

0

2)2(

N

n

nk

NWnx
+







1
2

0

)12()12(

N

n

kn

NWnx
 

  (even)  (odd) 

        = 




1
2

0

2)(

N

n

nk

Ne Wnx
+ 

K

NW 




1
2

0

2)(

N

n

nk

No Wnx
 

        = 




1
2

0

2/)(

N

n

nk

Ne Wnx
+

K

NW 




1
2

0

2/)(

N

n

nk

No Wnx
 

        = Xe(k) + 
K

NW Xo(k) 
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Although k=0 to N-1, each of the sums are computed only for k=0 to N/2 -1, since Xe(k) 

& Xo(k) are periodic in k with period N/2 

For K   N/2  
2

N
K

NW


= -

K

NW  

X(k) for K  N/2 

X(k) = Xe(k-N/2) -
2

N
K

NW


  Xo(k-N/2) 

 

N = 8   

x(2n) = xe(n) ; x(2n+1) = xo(n) 

xe(0) = x(0)  xo(0) = x(1) 

xe(1) = x(2)  xo(1) = x(3) 

xe(2) = x(4)  xo(2) = x(5) 

xe(3) = x(6)  xo(3) = x(7) 

 

X(k) = Xe(k) + )(8 kXoW k
 k = 0 to 3 

        = Xe(k-4) - )4(4

8  kXoW k
 k = 4 to 7 

X(0) = Xe(0) + 
0

8W Xo(0) ; X(4) = Xe(0) - 
0

8W Xo(0) 

X(1) = Xe(1) + 
1

8W Xo(1) ; X(5) = Xe(1) - 
1

8W Xo(1) 

X(2) = Xe(2) + 
2

8W Xo(2) ; X(6) = Xe(2) - 
2

8W Xo(2) 

X(3) = Xe(3) + 
3

8W Xo(3) ; X(7) = Xe(3) - 
3

8W Xo(3) 

X(0) & X(4) having same i/ps with opposite signs 
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This 
2

N
pt DFT can be expressed as combination of 

4

N
pt DFT. 

Xe(k) = Xee(k) + )(2 kXeoW k

N  k = 0 to 
4

N
-1   (0 to 1) 

           = Xee(k-
4

N
)- )

4
(

)
4

(2 N
kXeoW

N
k

N 


 k = 
4

N
 to 

2

N
-1     ( 2 to 3 ) 

Xo(k) = Xoe(k) + )(2 kXooW k

N  k = 0 to 
4

N
-1    

           = Xoe(k-
4

N
) - )

4
(

)
4

(2 N
kXooW

N
k

N 


 k = 
4

N
 to 

2

N
-1  

For N=8 

Xe(0) = Xee(0) + 
0

8W Xeo(0) ;  xee(0) = xe(0) = x(0)  
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Xe(1) = Xee(1) + 
2

8W Xeo(1) ;  xee(1) = xe(1) = x(2)   

Xe(2) = Xee(0) - 
0

8W Xeo(0) ;  xeo(2) = xe(2) = x(4)  

Xe(3) = Xee(1) - 
2

8W Xeo(1) ;  xeo(3) = xe(3) = x(6)  

Where Xee(k) is the 2 point DFT of even no. of xe(n) & Xeo(k) is the 2 point DFT of odd 

no. of xe(n) 

Similarly, the sequence xo(n) can be divided in to even & odd numbered sequences as  

xoe(0) = xo(0) = x(1) 

xoe(1) = xo(2) = x(5)  

xoo(0) = xo(1) = x(3) 

xoo(1) = xo(3) = x(7)  

Xo(0) = Xoe(0) + 
0

8W Xoo(0) ;  

Xo(1) = Xoe(1) + 
2

8W Xoo(1) ;  

Xo(2) = Xoe(0) - 
0

8W Xoo(0) ;  

Xo(3) = Xoe(1) - 
2

8W Xoo(1) ;  

Xoe(k) is the 2-pt DFT of even-numbered of xo(n) 

Xoo(k) is the 2-pt DFT of odd-numbered of xo(n) 

Xee(0) = xee(0) + xee(1) = xe(0) + xe(2) = x(0) + x(4)   

Xee(1) = xee(0) - xee(1) = xe(0) - xe(2) = x(0) - x(4) 
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Xee(0) = xee(0) + xee(1) = xe(0) + xe(2) = x(0) + x(4) 

Xee(1) = xee(0) - xee(1) = xe(0) - xe(2) = x(0) - x(4) 
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No. of 

Stages 

No. of 

points N 

No. of Complex 

Multiplications 

Speed 

Improvement Factor: 

NLog
N

N

2

2

2

 
Direct N2 FFT  

NLog
N

2
2

 

2 4 16 4 4 

3 8 64 12 5.33 

4 16 256 32 8 

5 32 1024 80 12.8 

6 64 4096 192 21.33 

For N=8 

No of stages given by= Log2N = Log28 = 3. 

No. of 2 i/p sets = 2( Log 
2

N  -1 ) = 4 

Total No. of Complex additions using DITFFT is  NNLog2  
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                                 = 8 * 3 =24 

Each stage no. of butterflies in the stage= 2m-q  where q = stage no. and N=2m 

Each butterfly operates on one pair of samples and involves two complex additions and 

one complex multiplication. No. of butterflies in each stage N/2 

DITFFT: ( different representation) (u can follow any one) ( both representations are 

correct)  

X(k)    = 




1
2

0

2)2(

N

n

nk

NWnx + 






1
2

0

)12()12(

N

n

kn

NWnx  

 = 




1
2

0 2

)(

N

n

nk

Ne Wnx + 
k

NW  




1
2

0

2/)(

N

n

nk

No Wnx  

4 pt DFT Xe(k) + 
K

NW  Xo(k)   k= 0 to N/2 -1 =  0 to 3 

  Xe(k-
2

N
) - 

)
2

(
N

K

NW


 Xo(k-
2

N
) k = N/2 to N-1 = 4 to 7 

2 pt DFT  Xe(k)  = Xee(k) + K

NW 2  Xeo(k)  k = 0 to N/4-1 = 0 to 1 

   = Xee(k-N/4) - 
)

4
(2

N
k

NW


 Xeo(k-N/4) k = N/4 to N/2 -1 = 2 to 3 

  Xo(k)  = Xoe(k) + K

NW 2  Xoo(k)   k = 0 to N/4-1 = 0 to 1 

   = Xoe(k-N/4) - 
)

4
(2

N
k

NW


 Xoo(k-N/4) k = N/4 to N/2 -1 = 2 to 3 

1

4

2

8 WW   

N=8 

X(0) = Xe(0) + 0

8W Xo(0) ;   

X(1) = Xe(1) + 1

8W Xo(1) ;  

X(2) = Xe(2) + 2

8W Xo(2) ;   

X(3) = Xe(3) + 3

8W Xo(3) ;  

X(4) = Xe(0) - 0

8W Xo(0)   

X(5) = Xe(1) - 1

8W Xo(1)  

X(6) = Xe(2) - 2

8W Xo(2)  

X(7) = Xe(3) - 3

8W Xo(3)  

Xe(0) = Xee(0) + 
0

8W Xeo(0) ;    Xe(2) = Xee(0) - 
0

8W Xeo(0)  

Xe(1) = Xee(1) + 2

8W Xeo(1) ;    Xe(3) = Xee(1) - 
2

8W Xeo(1)  

Xo(0) = Xoe(0) + 0

8W Xoo(0) ;    Xo(2) = Xoe(0) - 
0

8W Xoo(0)  
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Xo(1) = Xoe(1) + 2

8W Xoo(1) ;    Xo(3) = Xoe(1) - 
2

8W Xoo(1)  

Xee(k) = 
1

4

0

4)4(

N

nk

NWnx  = 


1

0

4)4(
n

nk

NWnx
=x(0) + x(4) 

kW 4

8  

Xee(0) = x(0)+x(4) 

Xee(1) = x(0)-x(4) 

 

x(0)  x(0) x(0)  

x(4) x(2) x(1) 

x(2) x(4) x(2) 

x(6) x(6) x(3) 

x(1) x(1) x(4) 
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x(5) x(3) x(5) 

x(3) x(5) x(6) 

x(7) x(7) x(7) 

Other way of representation 
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5.2 DIFFFT: 

X(k)  = 




1
2

0

)(

N

n

nk

NWnx
+ 





1

2/

'

1

)'(
N

Nn

kn

NWnx
  put n’ = n+N/2 

 = 




1
2

0

)(

N

n

nk

NWnx
 + 







1
2

0

)2/()2/(

N

n

kNn

NWNnx  

 = 




1
2

0

)(

N

n

nk

NWnx
+ 

k
N

NW 2
 







1
2

0

)2/(

N

n

nk

NWNnx
 

 = 




1
2

0

)([

N

n

nx
+ (-1)k x(n+

2

N
)]

nk

NW  

X(2k)  = 




1
2

0

)([

N

n

nx
+ x(n+

2

N
)]

nk

NW 2/  

X(2k+1) = 




1
2

0

)({[

N

n

nx
- x(n+

2

N
)]

n

NW }

nk

NW 2/  

Let f(n) = x(n) + x(n+N/2) 

      g(n) = { x(n) – x(n+N/2) }
n

NW  
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N=8 

f(0) = x(0) + x(4) 

f(1) = x(1) + x(5) 

f(2) = x(2) + x(6)       

f(3) = x(3) + x(7) 

g(0) = [x(0) - x(4)] 
0

8W  

g(1) = [x(1) - x(5)] 
1

8W  

g(2) = [x(2) - x(6)] 
2

8W  

g(3) = [x(3) - x(7)] 
3

8W  
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X(4k)  = 




1
4

0

)([

N

n

nf
+ f(n+

4

N
)]

nk

NW 4/  

X(4k+2) = 




1
4

0

)([{

N

n

nf
- f(n+

4

N
)}

n

NW 2/ ]
nk

NW 4/  

X(4k+1) = 




1
4

0

)([

N

n

ng
+ g(n+

4

N
)]

nk

NW 4/  

X(4k+3) = 




1
4

0

)([{

N

n

ng - g(n+
4

N
)}

nk

NW 2/ ]

nk

NW 4/  

X(4k) = f(0) + f(2) + [ f(1) + f(3) ] 
kW 4

8  

X(4k+2) = f(0) – f(2) + { [ f(1) – f(3) ] 
2

8W }
kW 4

8  

X(0) = f(0) + f(2) + f(1) + f(3) 
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X(4) = f(0) + f(2) – [ f(1) + f(3) ] 

X(2) = f(0) - f(2) + [ f(1) - f(3)] 
2

8W  

X(6) = f(0) - f(2) - [ f(1) - f(3)] 
2

8W  

 

 

Find the IDFT using DIFFFT 

X(k) = { 4,  1-j 2.414,  0,  1-j 0.414,  0,  1+j 0.414,  0,  1+j 2.414 } 

Out put 8x*(n) is in bit reversal order x(n) = { 1,1,1,1,0,0,0,0} 
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6.DIGITAL FILTER STRUCTURE 

The difference equation 

y(n) = 


P

F

N

Nk
ka x(n-k) + 



M

k 1

kb  y(n-k) 

H(z) = 













M

k

k

k

N

Nk

k

k

zb

za
P

F

1

1
  or  = A 

FN
Z 

NFNp

k



1
 1

1

1

)1(

)1(











Zd

ZC

k

M

k

k


 

If bk= 0 non recursive or all zero filter. 

6.1 Direct Form – I 

 

 

 

 

 

 

 

 

 

1. Easily implemented using computer program. 

2. Does not make most efficient use of memory = M+Np+NF delay elements. 

6.2 Direct form-II 
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Smaller  no. of delay elements = Max of (M, Np) + NF 

Disadvantages of D-I & D-II 

1. They lack hardware flexibility, in that, filters of different orders, having different no. 

of multipliers and delay elements. 

2. Sensitivity of co-efficient to quantization effects that occur when using finite-precision 

arithmetic. 

6.3 Cascade Combination of second-order section (CSOS) 

y(n) = x(n) + a1 x(n-1) + a2 x(n-2) + b1 y(n-1) + b2 y(n-2) 

H(z) = 2

2

1

1

2

2

1

1

1

1








ZbZb

ZaZa
 

 

 

Ex: 
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H(z) = 

42
1

1212

5

12

5

3
21

2
1










ZZ

Z
Z

z

 = 

42
1

4

1

4

5

4

5
1

3
21

3
2

1




















ZZ

Z
Z

Z
z

 

 =

 

42
1

1
4

1
1

3
21

211

















ZZ

ZZZ
z

 =  
3

1
 z 








 1

4

1
1 Z  

 

42
1

1
21

21









ZZ

ZZ
 

 

Ex: 

H(z) = 
 


































8
1

4
1

2
1

111

21

ZZZ

ZZZ
 = 

 


































8
1

4
1

2
1

1
111

32

ZZZ

ZZ
Z  

 =

  


































8
1

4
1

2
1

45.145.065.0
111

121

ZZZ

ZZZ
Z

 

 = Z 

 
















2
1

45.1
1

1

Z

Z  

324
1

45.065.0
21

21









ZZ

ZZ
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6.4 Parallel Combination of Second Order Section (PSOS) 

Ex: 

H(z) = 

42
1

1212

5

12

5

3
21

2
1










ZZ

Z
Z

z

  = 

42
1

1212

5

12

5

3

1

21

3
21


















ZZ

Z
ZZZ

 









 


12

321

12

5

3

1

12

5

1242
1 ZZ

ZZZ

3

7

3

1


Z

   

        
3612

123 


ZZZ

 

  ___-____+____-_______ 

                   
3

1

1212

7 12


 ZZ

 

                          
3

7

6

7

12

7 12


 ZZ

 

______________________ 

    
3

7

4

5 1 Z  

H(z) = Z 






























42
1

4

5

3

7

3
2

2
1

1
1

ZZ

Z
Z
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Ex: 

H(z) = 
 


































8
1

4
1

2
1

111

21

ZZZ

ZZZ
 obtain PSOS 

  


































8
1

4
1

2
1

211
111

11

ZZZ

ZZ

 = 

























4
1

2
1

11 Z

B

Z

A













8
1

1Z

C
 

A = 8/3 B = 10  C = -35/3 

 

 

 

 

 

 

 

 

                                                

6.5 Jury – Stability Criterion 

H(z) = 
)(

)(

zD

zN
 

 D(z) = 



N

i

iN

i Zb
0

 = bo Z
N +b1 Z

N-1 + b2 Z
N-2 +….. bN-1 Z

1 + bN 

ROWS COEFFICIENTS 

1 

2 

bo        b1  …….    bN 

bN       bN-1  …….  bo 

3 

4 

Co       C1  …….    CN-1 

CN-1    CN-2  ……. Co 

5 

6 

do        d1  …….    dN-2 

dN-2     dN-3  ……. do 
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. 

. 

. 

2N-3 

 

 

 

r0     r1                  r2 

 

Ci = 
iN

iNo

bb

bb 

 i = 0,1,…N-1 

di = 
iN

iNo

cc

cc

1

1





  i = 0,1,…N-2 

i. D(1) > 0         

ii. (-1)N D(-1) > 0 

iii. No bb 
  

   1 No cc
 
   2 No dd

 
   2rro   

Ex: 

H(z) = 
1234 234

4

 ZZZZ

Z
           D(z) = 1234 234  ZZZZ  

1 

2 

4     3      2     1   1 

1     1      2     3   4 

3 

4 

15   11    6     1     

1      6     11   15    

5 224    159   79 

D(1) = 4+3+2+1+1 = 11 > 0,  (-1)4 D(-1) = 3 >0 

4bbo   3cco   2ddo   Stable. 

Ex:  

H(z) = 
21

2

1

4

7
1

1

  ZZ
 = 

274

4
2

2

 ZZ

Z
   Ans: Unstable 
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Non Recursive filters Recursive filters 

y(n) = 


k

ak x(n-k) 

for causal system 

= 


0k

 ak x(n-k) 

For causal i/p sequence  

y(n) = 


N

k 0

 ak x(n-k) 

It gives FIR o/p. All zero filter. 

Always stable. 

y(n) = 


Np

Nfk

ak x(n-k) – 


M

k 1

bk y(n-k) 

for causal system 

y(n) = 
Np

k 0

ak x(n-k) – 


M

k 1

bk y(n-k) 

It gives IIR o/p but not always. 

Ex: y(n) = x(n) – x(n-3) + y(n-1) 

General TF : H(z) = 














M

k

k

k

N

Nk

k

k

zb

za
P

F

1

1

   

bk = 0 for Non Recursive 

Nf= 0 for causal system 

 

FIR filters IIR filters 

1. Linear phase no phase distortion. Linear phase, phase distortion. 

2. Used in speech processing, data 

transmission & correlation processing 

Graphic equalizers for digital audio, 

tone generators filters for digital 

telephone 

3. Realized non recursively. Realized recursively. 

4. stable Stable or unstable. 

H(n) = an u(n)   a<1 stable 

         =  0          a>1 unstable 

5. filter order is more Less 

6. more co-efficient storage Less storage 

7. Quantization noise due to finite 

precision arithmetic can be made 

negligible 

Quantization noise 

8. Co-efficient accuracy problem is More 
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less severe 

9. used in multirate DSP (variable 

sampling rate) 
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7. IIR FILTER DESIGN 

 Butterworth, chebyshev & elliptic techniques. 

 Impulse invariance and bilinear transformation methods are used for translating s-

plane singularities of analog filter to z-plane. 

 Frequency transformations are employed to convert LP digital filter design into HP, 

BP and BR digital filters. 

 All pass filters are employed to alter only the phase response of IIR digital filter to 

approximate a linear phase response over the pass band. 

The system function = H(s) 

The frequency transfer function = H(j ) = H(s) / s=j  

The power transfer function = 
2

)( jH = H(j ) H*(j ) = H(s) H(-s) / s=j  

To obtain the stable system, the polse that lie in the left half of the s-plane are assigned to 

H(s). 

7.1 BUTTERWORTH FILTER DESIGN 

The butterworth LP filter of order N is defined as HB(s) HB(-s) = N

cj

s
2

1

1















 

 Where s = j c  

 
2

)( cB jH   = 
2

1
  or  dbjH cB )(  = -3dB ‘s 

It has 2N poles 

N

cj

s
2

1 











 = 0 

N

cj

s
2













= -1 

S2N =  -1 ( cj )2N 

 = 
N

c

j
j ee 22 )( 




 = c 2N  je  

Nj

e
2

2



mje 2  

S2N =  
N

c

2

  







  mN
j

e

21

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Sm = c  








 

N

mN
j

e 2

21


    0 12  Nm  

 

Ex: for N=3 

6

)24( m
j

e




 = 3

2
j

e , je , 3

4
j

e , 3

5
j

e ,
2

j

e , 3

7
j

e  = 1200, 1800, 2400, 3000, 3600, 600 

 

2

1

1

1

11

1

1

1

1

)(

)(































c
c

c sRS

RCS

CS
R

CS

sVi

sVo

 

 

Poles that are let half plane are belongs to desired system function. 

2
)( jH B = 

N

c

2

1

1

















 

For a large  , magnitude response decreases as  -N, indicating the LP nature of this 

filter. 

 

dBB jH )(  = 10log10
2

)( jH B  

  = -10 log10(

N

c

2

1 













 ) 
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 As   

  = -20 N log10  

  = -20 N dB/ Decade = -6 N dB/Octane 

As N increases, the magnitude response approaches that of ideal LP filter. 

The value of N is determined by Pass & stop band specifications. 

 

Ex: Design Butterworth LPF for the following specifications. 

Pass band: 

-1<
2

)( jH dB   0  for  0  1404   ( p = 1404 )    

Stop band: 

2
)( jH dB < -60  for   8268   ( s = 8268 ) 

If the  c  is given 

2
)( sjH  = [

N

c

s
2

1 













 ]-1 < 10-6  (-60dB) 

= N > 
)log(2

)110log( 6

c

s







 

Since  c is not given, a guess must be made. 

The specifications call for a drop of -59dB, In the frequency range from the edge of the 

pass band (1404 ) to the edge of stop band (8268 ). The frequency difference is equal to 

log2 








1404

8268
 = 2.56 octaves. 
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1 oct ----            - 6N dB 

2.56 ------              ? 

=>  2.56 X - 6N dB = -59 dB’s 

N = 8.3
656.2

59






X
 

There fore: N =4 

Now 
2

)( sjH B  = [

N

c

s
2

1 













 ]-1 < 10-6 

N

c

s
2

1 













  > 106 

Ns 2  > 106 Nc 2  

s  10 N2

6

> c =>  1470.3  >  c 

 c <1470.3  

Let  c =1470.3  

At this  c it should satisfy pass band specifications. 

2
)( pjH B  = [

N

c

p
2

1 













 ]-1 > 0.794 (= -1dB) 

  = 0.59 

This result is below the pass band specifications. Hence N=4 is not sufficient. 

Let N=5 

 c <  s X 10 N2

6

 = 2076.8  

In the pass band 
2

)( pjH B  = [

10

2076

1404
1 








 ]-1  = 0.98 

Since N=5 

 c = 2076   

S1 = -2076   

S2, 3 = 2076  (cos (4 /5)  j sin(4 /5)) = 2076
144je

 

S4, 5 = 2076  (cos (3 /5)  j sin(3 /5)) = 2076
108je
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HB(s) = 

 
   2222

5

)2076(1283)2076(33592076

2076





 sssss  

 

1. Magnitude response is smooth, and decreases monotonically as   increases from 0 to 

  

2. the magnitude response is maximally flat about  =0, in that all its derivatives up to 

order N are equal to zero at =0 

Ex:  c=1, N=1 

2
)( jH B  = (1+ 2)-1 

The first derivative 

d

d 2
)( jH B  = 

 221

2




 =0  at  =0 

The second derivative 

2

2

d

d 2
)( jH B  = -2  at =0 

3. The phase response curve approaches 
2

N
for large  , where N is the no. of poles of 

butterworth circle in the left side of s-plane. 

Advantages: 

1. easiest to design 

2. used because of smoothness of magnitude response . 
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Disadvantage:  

Relatively large transition range between the pass band and stop band. 

Other procedure 

When  c = 1      Avs = 
N

wo

w

Avo
2

1 









 

2
)(sH B  = 

N

j

s

Avo
2

1 









 

If n is even S2N = 1 = )12( kje  

The 2N roots will be Sk= N
kj

e 2
)12(




   k=1,2,….2N 

Sk =
N

kjSin
N

kCos
2

)12(
2

)12(


  

Therefore: 
2

)(sH B  = T(s) = 
)12(

1

2
2/

1




sCoss k

N

k


  where  k = 

N
k

2
)12(


  

If N is odd 

S2n =1 = kje 2  

Sk = Nkje /2   k=0,1,2….(2N-1) 

T(s) = 

)12(

1

2
2/)1(

1






sCoss k

N

k


  where  k = 

N
k


 

 

0 1)(log20 KjH   for 1  

2)(log20 KjH    for 2  
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10 log 

































N

c

2
1

1

1
 = K1 110

1
10

12













kn

c
 

10 log 

































N

c

2
2

1

1
 = K2 110

2
10

22













kn

c
 

Dividing 

110

110

2

1

10

2

10

1
2





















k

k
n

 

n = 





































2

1
log2

110

110
log

10

10

2

10

1

10 k

k

 

choosing this value for n, results in two different selections for c . If we wish to satisfy 

our requirement at 1  exactly and do better than our req. at 2 , we use  

c = 
nk 2

1

10

1

1

110



















 or  c =
nk 2

1

10

2

2

110



















 for better req at 2  

End  

7.2 CHEBYSHEV FILTER DESIGN 

Defined as Hc(S) Hc(-S) = 


























1

221
pj

S
CN  

 = measure of allowable deviation in the pass band. 

CN(x) = Cos(NCos-1(x)) is the Nth order polynomial. 

Let x = Cos  

CN(x) = Cos(N ) 

C0(x) = 1 

C1(x) = Cos  =x 

C2(x) = Cos2  = 2 Cos2 -1 = 2x2-1 

C3(x) = Cos3  = 4 Cos3 -3 Cos  = 4x3-3x     etc.. 
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N CN(x) 

0 

1 

2 

3 

4 

1 

x 

2x2-1 

4x3-3x 

8x4- 8x2 +1 

 

Two features of Chebyshev poly are important for the filter design 

1. 1(x)CN   for 1x  

   1)(1 212 


jHc  for  p0  

Transfer function lies in the range   1)(1 212 


jHc  for  p0   

Whereas the frequency value important for the design of the Butterworth filter was the 

c , the relevant frequency for the Chebyshev filter is the edge of pass band p . 

2. )(,1 nCx N    Increases as the Nth power of x. this indicates that for   >> p , the 

magnitude response decreases as  -N, or -6N dB Octane. This is identical to Butterworth 

filter. 

Now the ellipse is defined by major & minor axis. 

Define  = 21 1     

Minor  r  = p
2

11


















NN 

 

Major  R  = p
2

11


















NN 

  N = Order of filter. 

SP = r Cos +j R Sin  
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Ex:  

Pass band: 

-1<
2

)( jH dB   0  for  0  1404    

Stop band: 

2
)( jH dB < -60  for   8268    

Value of  is determined from the pass band 

10 log   121


  > -1dB  -1dB = 0.794 

 <  2
1

1.0 110   = 0.508 

  = 0.508 

Value of N is determined from stop band inequality 

  2
sjH c  =



























1

221
pj

s
CN <10-6 

Since 9.5




p

s
  CN(5.9) > 

  2

1

2

6 110







 


= 1969 

Evaluating  

C3(5.9) = 804        C4(5.9) = 9416 therefore N = 4 is sufficient. 

Since this last inequality is easily satisfied with N=4 the value of   can be reduced to as 

small as 0.11, to decrease pass band ripple while satisfying the stop band. The value  =0.4 

provides a margin in both the pass band and stop band. We proceed with the design with 

=0.508 to show the 1dB ripple in the pass band. 
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Axes of Ellipse: 

 =0.508-1 + (1+0.508-2)1/2 = 4.17 

R = 


1494)67.043.1(70217.417.4
2

1404
4

1

4

1













 

r = 


51217.417.4
2

1404
4

1

4

1













 

poles locations : 
8

5
,

8

7 
  

S1,2 = 
8

7
1494

8

7
512





 SinjCos   = 

130742572473 jej    

S3,4 = 
8

5
1494

8

5
512





 SinjCos   = 

9813941380196 jej    

Hc(S) = 
  

]1394)98(1394*2*[])742()130(742*2*[

1394742
2222

2





 CosSSCosSS
 

 Chebyshev filter poles are closer to the j  axis, therefore filter response exhibits a 

ripple in the pass band. There is a peak in the pass band for each pole in the filter, located 

approximately at the ordinate value of the pole. 

 Exhibits a smaller transition region to reach the desired attenuation in the stop band, 

when compared to Butterworth filter. 

 Phase response is similar. 

 Because of proximity of Chebyshev filter poles to j  axis, small errors in their 

locations, caused by numerical round off in the computations, can results in significant 

changes in the magnitude response. Choosing the smaller value of  will provide some 

margin for keeping the ripples within the pass band specification. However, too small a 

value for   may require an increase in the filter order. 

 It is reasonable to expect that if relevant zeros were included in the system function, a 

lower order filter can be found to satisfy the specification. These relevant zeros could serve 

to achieve additional attenuation in the stop band. The elliptic filter does exactly this. 

7.3 IMPULSE INVARIANCE METHOD 



 

 

108 

H(z) = 






0

)(
n

nZnh  

H(z) (at z = 
STe ) =

STnenh )(  

 Tjjw ere )   r = Te   Twee Tjjw    

 

Let S1 =  j =>  Z1 = TjT ee   

S2 = )
2

(
T

j


    =>  Z2 = TjTjTjT eeee    2  

 

If the real part is same, imaginary part is differ by integral multiple of 2
T


, this is the 

biggest disadvantage of Impulse Invariance method. 

Let HA(S) = 
  22

bas

as




 = 

   jbasjbas

as




 

hA(t) = Cosbte at  for t 0                                         s1 = -a-jb 

 = 0        otherwise                                                    s2 = -a+jb 

h (nTs) = )(bnTsCose anTs  for n 0   

H(z) = 
21

1

)(21

)(1








ZZbTsCose

ZbTsCose
aTs

aTs

 = 
)1)(1(

)(1
1)(1)(

1









ZeZe

ZbTsCose
TsjbaTsjba

aTs

 

The pole located at s=p is transformed into a pole in the Z-plane at Z = pTse , however, the 

finite zero located in the s-plane at s= -a was not converted into a zero in the z-plane at Z = 

aTse , although the zero at s=  was placed at z=0. 
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Desing a Chebyshev LPF using Impulse-Invariance Method. 

S1,2 = -473  j 572   

S3,4 = -196  j 1380  

[The freq response for analog filter we plotted over freq range 0 to 10000 . To set the 

discrete-time freq range (0,
Ts


), therefore Ts = 10-4] 

Z1,2 = TsS
e 2,1  = 179.0148.0 je  = 0.862 e 2.10j  

Z3,4 = TsS
e 4,3  = 433.0061.0 je  = 0.94 e 8.24j  

H(z) = 
)94.08.2494.0*21)(862.02.10862.0*21( 221221   ZZCosZZCos

k
 

        = 
)88.0707.11)(743.069.11( 2121   ZZZZ

k
 

 

Methods to convert analog filters into Digital filters: 

1. By approximation of derivatives 

dt

dx
/ t=nTs  = 

Ts

TsnTsxnTsx )()( 
 

S = 
Ts

Z 11 
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Or 

Using forward-difference mapping based on first order approximation Z = sTse  1+STs 

S = 
Ts

Z 1
 

Using backward- difference mapping is based on first order approximation 

STseZ sTs   11  

S   
ZTs

Z 1
=

Ts

Z 11 
 

2

2

dt

xd
/t=nTs = nTst

dt

dx

dt

d









/  

 

=     
Ts

Ts

TsnTsxTsnTsx

Ts

TsnTsxnTsx )2()()()( 




 

 

=     
2

)2()(2)(

Ts

TsnTsxTsnTsxnTsx 
 

 

2

21
2 21

Ts

ZZ
S

 
 = 

2
11







  

Ts

Z
 

Therefore Sk = 

k

T

Z







  11
 

Therefore H(z) = Ha(s) /s= 






  

T

Z 11
  using backward difference 

Z = 
STs1

1
      = 0.5 + 

STs

STs





1

)1(5.0
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   =  
Tsj1

1
= 

2222 11

1

Ts

Tsj

Ts 





 

Z - 0.5 = 
)1(

)1(5.0

STs

STs




 

5.05.0 z is mapped into a circle of radius 0.5, centered at Z=0.5 

 

Using Forward-difference 

S=
Ts

Z 1
 Z=1+STs 

u+jv = 1+ ( ) j Ts 

if  =0 u=1 and j axis maps to Z=1 

If  >0, then u>1, the RHS-plane maps to right of z=1. 

If  <0, then u<1, the LHS-plane maps to left of z=1. 

The stable analog filter may be unstable digital filter. 

 

7.4 Bilinear Transformation 

 Provides a non linear one to one mapping of the frequency points on the jw axis in s-

plane to those on the unit circle in the z-plane. 
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 This procedure also allows us to implement digital HP filters from their analog 

counter parts. 

S = 
1

12





Z

Z

Ts
=

1

1

1

12








Z

Z

Ts
            

{Using trapezoidal rule y(n)=y(n-1)+0.5Ts[x(n)+x(n-1)] 

                           H(Z)=2(Z-1) / [Ts(Z+1)]    } 

 

To find H(z), each occurrence of S in HA(s) is replaced by 
1

12





Z

Z

Ts
 

And   Z = 
1

2

1
2





STs

STs

 

1
2

1
2






Ts

j

Ts
j

e jw

 = 

2
tan

2/1
2

2

2
tan

2/1
2

2

1

1

1
2

1
2

Ts
j

Ts
j

e
Ts

e
Ts

























































 

2
tan2 1 Ts

j
jw ee



  w=2tan-1 
2

Ts
 

The entire j  axis in the s-plane -<j <  maps exactly once onto the unit circle -

  w such that there is a one to one correspondence between the continuous-time and 

discrete time frequency points. It is this one to one mapping that allows analog HPF to be 

implemented in digital filter form. 

 

As in the impulse invariance method, the left half of s-plane maps on to the inside of the 

unit circle in the z-plane and the right half of s-plane maps onto the outside. 
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In Inverse relationship is 









2
tan

2 w

Ts
 

For smaller value of frequency 

2

22

w
Cos

w
Sin

Ts
  = 

Ts

w

w

ww

Ts














....
4

1

....
822
2

3

 

 

 

(B.W of higher freq pass band will tend to reduce disproportionately) 

 

The mapping is  linear for small  and w. For larger freq values, the non linear 

compression that occurs in the mapping of  to w is more apparent. This compression 

causes the transfer function at the high   freq to be highly distorted when it is translated to 

the w-domain. 

Prewarping Procedure: 

When the desired magnitude response is piece wise constant over frequency, this 

compression can be compensated by introducing a suitable prescaling or prewarping to the 

 freq scale.   scale is converted into  * scale. 

 * = 






 

2
tan

2 Ts

Ts
 

We now derive the rule by which the poles are mapped from the s-plane to the z-plane. 

Let HA(s) = 
SpS 

1
  S=Sp 
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H(z) = 

Sp
Z

Z

Ts
















1

1

1

12

1
  =   

  



















1

1

2

2
12

)1(

Z
SpTs

SpTs
SpTs

ZTs
 

A pole at S=Sp in the s-plane gets mapped into a zero at z= -1 and a pole at Z = 
SpTs

SpTs





2

2
 

Ex: 

Chebyshev LPF design using the Bilinear Transformation 

Pass band: 

-1< )( jH dB   0  for  0  1404  =4411 rad  

Stop band: 

)( jH dB < -60  for   8268 rad/sec  =25975 rad/s 

Let the Ts = 10-4 sec  

Prewarping values are    

 p* = 






 

2
tan

2 Ts

Ts
  = 2*104 tan(0.0702 ) = 4484 rad/sec 

And  s* = 






 

2
tan

2 Ts

Ts
  = 2*104 tan(0.4134 ) = 71690 rad/sec 

The modified specifications are 

Pass band: 

-1< *)( jH dB   0  for  0  *4484 rad/s  

Stop band: 

*)( jH dB < -60  for   *71690rad/sec 

Value of  : is determined from the pass band ripple    10log   dB11
1

2 


  

      = 0.508 

Value of N: is determined from 

  2
*sjH c  =

1

22

*

*
1































p

s
CN <10-6 

Since 16
*

*






p

s
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CN
2(16) < 

 







 
2

6 110


 

CN(16) < 
  2

1

2

6

)508.0(

110







 
= 1969 

C3(16) = 16301 

N = 3 is sufficient 

Using Impulse Invariance method a value of N=4 was required. 

 =4.17 

Major  R  = p * 
2

11


















NN 

  =  500117.417.4
2

4484
3

1

3

1



















 

r = 221617.417.4
2

4484
3

1

3

1



















 

Since there are three poles, the angles are 
3

2
&


  

S1 = r cos  + j Rsin  = -2216 

S2,3 = 2216 Cos
3

2
 j 5001 Sin

3

2
 = -1108 j 4331 = 4470 4.104je  

Hc(s) = 
)44702223)(2216(

10*43.4
22

10

 sSs
 

Pole Mapping  

At S=S1 

In the Z-plane there is zero at Z = -1 and pole at Z = 801.0
)10*2216(2

)10*2216(2
4

4









 

S2,3 = there are two zeros at Z=-1 

Z = 5.24

4

4

9.0373.0801.0
10*)43311108(2

10*)43311108(2 jej
j

j 









 

H(z) = 4.29 * 10-3  
21

21

1

1

81.0638.11

21

801.01

1
















ZZ

ZZ

Z

Z
 

Pole Mapping Rules: 

Hz(z) = 1-CZ-1  zero at Z=C and pole at Z = 0 
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Hp(z) = 
11

1
 dZ

 pole ar Z=d and zero at z=0 

C and d can be complex-valued number. 

Pole Mapping for Low-Pass to Low Pass Filters 

Applying low pass to low pass transformation to Hz(z)  we get  

HLZ(Z) = 1-c
1

1

1 







Z

Z




  = (1+c ) 

1

1

1

1
1





















Z

Z
c

c







 

The low pass zero at z=c is transformed into a zero at z=C1 where C1 = 
















c

c

1
 

And pole at z=0 is Z=  

Similarly, 

HLP(Z)= 

  



























1

1

1
11

1

Z
d

d
d

Z







 

Pole at z=d => Z= 












d

d





1
 

Zero at z=0 => z =   

H(z) = K 
  

  211

211

674.007.11622.01

2211








ZZZ

ZZZ
 

K = 
 

029.0
))356.0)(373.0819.0(1))(356.0)(373.0819.0(1)(356.0*801.01(

)356.0)(1(1
3






jj
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8.FIR Filters 

Phase Delay: 





)(
 p  

Group Delay: 





d

d
g

)(
  

If p = g =constant and independent of frequency are called as constant time delay or 

linear phase filters. 















o

o

p

)(

Changes with frequency       

g = -  =constant. 

8.1 Type 1 Sequence 

 

Center of Symmetry M= 


2

1N
 integer value 

H(𝑒𝑗Ω𝑇)= ∑ ℎ(𝑛)𝑒−𝑗Ω𝑛𝑇(
𝑁−3

2
)

𝑛=0  + h(
𝑁−1

2
) 𝑒−𝑗Ω𝑇(

𝑁−1

2
)
 + ∑ ℎ(𝑛)𝑒−𝑗Ω𝑛𝑇(𝑁−1)

𝑛=
𝑁+1

2

 

 

Let N-1-n =n 

 

∑ ℎ(𝑛)𝑒−𝑗Ω𝑛𝑇(𝑁−3)/2
𝑛=0  + h(

𝑁−1

2
) 𝑒−𝑗Ω𝑇(

𝑁−1

2
)
 + ∑ ℎ(𝑁 − 1 − 𝑛)𝑒−𝑗Ω(𝑁−1−𝑛)𝑇(

𝑁−3

2
)

𝑛=0  

 

 
 

∑ ℎ(𝑛)𝑒−𝑗Ω𝑛𝑇(𝑁−3)/2
𝑛=0  + h(

𝑁−1

2
) 𝑒−𝑗Ω𝑇(

𝑁−1

2
)
 + ∑ ℎ(𝑛)𝑒−𝑗Ω(𝑁−1−𝑛)𝑇(

𝑁−3

2
)

𝑛=0  
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𝑒−𝑗Ω
𝑁−1

2
𝑇[ ∑ ℎ(𝑛)𝑒𝑗Ω𝑇[

𝑁−1

2
−𝑛](𝑁−3)/2

𝑛=0  + h(
𝑁−1

2
)  + ∑ ℎ(𝑛)𝑒−𝑗Ω(

𝑁−1

2
−𝑛)𝑇(

𝑁−3

2
)

𝑛=0  

 

 

H(𝑒𝑗Ω𝑇) =  𝑒−𝑗Ω
𝑁−1

2
𝑇[ ∑ 2ℎ(𝑛)𝑐𝑜𝑠Ω𝑇(

𝑁−1

2
− 𝑛)

(𝑁−3)/2
𝑛=0  + h(

𝑁−1

2
)  ] 

 

   

 

H(w) = 
MTj

N

n

eMnTCosnhMh 




















 
2

3

0

)()(2)(  

T
N








 


2

1
  

Amplitude spectrum is even symmetric about w=0 &   & both H(0) & H( ) can be non 

zero. 

8.2 Type 2 Sequence 

 

h(n) = h(N-1-n) 

Center of Symmetry M= 


2

1N
 half-integer value 

H( Tje  ) = 





1

0

)(
N

n

nTjenh  

 = 






1
2

0

)(

N

n

nTjenh +





1

2

)(
N

N
n

nTjenh
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Let N-1-n = m 

 = 






1
2

0

)(

N

n

nTjenh + 



0

1
2

)1()1(
N

m

mNTjemNh  

But h(N-1-m) = h(m) 

 == 






1
2

0

)(

N

n

nTjenh +






1
2

0

)1()(

N

m

mNTjemh  

 = 











 




1
2

0

2

1

)(

N

n

N
Tj

nTj eenh +











 




1
2

0

2

1

)1()(

N

n

N
Tj

nNTj eemh  

 = 



































 



2

)(2

)1(
2

)1(()1(
2

(1
2

0

2

1 N
T

nNTjN
T

nTj
N

n

N
Tj ee

enh  

 = 














 













 


2

1
cos)(2

1
2

0

2

1
N

nTenh

N

n

N
Tj

 

 = 














 













 


2

1
cos)(2

1
2

0

2

1
N

nTnhe

N

n

N
Tj

----Magnitude 

T
N








 


2

1
 Linear Phase  

 

H(w) = 
MTj

N

n

eMnTCosnh 





















1

2

0

)()(2  

The Amplitude spectrum is even symmetric about w=0 & odd symmetric about w=   & 

both H( ) is always zero for type 1 & 2 : Constant phase delay and group delay. 

8.3 Type 3 Sequence 
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M= 


2

1N
 integer value 

H(w) = j
MTj

N

n

enMTSinnh 





















2

3

0

)()(2  

It shows generalized linear phase of MT
2


 and constant group delay of M. The 

Amplitude spectrum is odd symmetric about w=0 & w=  and H(0) & H( ) are always zero. 

(Generalized means )(  may jump of   at 0  if H(ejw) is imaginary. 

8.4 Type 4 Sequence 

 

H(w) = j
MTj

N

n

enMTSinnh 





















1

2

0

)()(2  

Generalized linear phase and constant group delay of M. The Amplitude spectrum is odd 

symmetric about w=0 & even symmetric about w=  and H(0)=0 always. 
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8.5 Poles & Zeros of linear phase sequences: 

The poles of any finite-length sequence must lie at z=0. The zeros of linear phase 

sequence must occur in conjugate reciprocal pairs. Real zeros at z=1 or z=-1 need not be 

paired (they form their own reciprocals), but all other real zeros must be paired with their 

reciprocals. Complex zeros on the unit circle must be paired with their conjugate (that form 

their reciprocals) and complex zeros anywhere else must occur in conjugate reciprocal 

quadruples. To identify the type of sequence from its pole-zero plot, all we need to do is 

check for the presence of zeros at z=   and count their number. A type-2 seq must have an 

odd number of zeros at z=-1, a type-3 seq must have an odd number of zeros at z=-1 and 

z=1, and type-4 seq must have an odd number of zeros at z=1. The no. of other zeros if 

present (at z=1 for type=1 and type-2 or z=-1 for type-1 or type-4) must be even. 
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Prove: 

H(Z) = ∑ 𝒉(𝒏)𝒁−𝒏𝑵−𝟏
𝒏=𝟎  

H(Z)at Z=Z0  = H(Z0)=  ∑ 𝒉(𝒏)𝑵−𝟏
𝒏=𝟎  𝒁𝟎

−𝒏  

=h(0) + h(1) 𝒁𝟎
−𝟏 ++ h(2) 𝒁𝟎

−𝟐 +                 ……..    + h(N-1) 𝒁𝟎
−(𝑵−𝟏)

=0 

For linear phase h(N-1-n)=h(n) 

h(N-1) + h(N-2) 𝒁𝟎
−𝟏 ++ h(N-2) 𝒁𝟎

−𝟐 +                 ……..    + h(0) 𝒁𝟎
−(𝑵−𝟏)

=0 

 𝒁𝟎
−(𝑵−𝟏)

[h(0) + h(1) 𝒁𝟎
𝟏 ++ h(2) 𝒁𝟎

𝟐 +                 ……..    + h(N-1) 𝒁𝟎
(𝑵−𝟏)

]=0 

 𝒁𝟎
−(𝑵−𝟏)

= ∑ 𝒉(𝒏)(𝒁𝟎   
−𝑵−𝟏

𝒏=𝟎 ) -n=0 

Therefore H(Z0)= H(𝒁𝟎
−𝟏)=0 

If Z0 is a zero of H(Z), then 𝒁𝟎
−𝟏 is also a zero 

1 If Z1 = -1 then 𝒁𝟏
−𝟏 = Z1 , then the zero lie at Z1=-1 

This group contains only one zero on the unit circle 

2) If Z2 is real zero with |Z2| <1 then 𝒁𝟐
−𝟏 is also a real zero and there are two zeros 

in this group 

3) If Z3 is a comple zero with |Z3| =1 then 𝒁𝟑
−𝟏 = 𝒁𝟑

∗  and there are two zeros in this 

group 

4) If Z4 is a complex zero with |Z4| ≠1 then this group contain four zeros Z4, 𝒁𝟒
−𝟏 =  

𝒁𝟒
∗  , (𝒁𝟒

∗ )-1 

                                                           

 

                                                                                          (𝒁𝟒
∗ )-1 

                                                  Z3                𝒁𝟒
∗  

                                              Z1                          Z2           𝒁𝟐
−𝟏 

                                                                            Z4 

                                         𝒁𝟑
−𝟏 = 𝒁𝟑

∗                                               

                                                                                𝒁𝟒
−𝟏 

 

 



 

 

123 

FIR Filters 

8.6 Fourier series Method        
22

Fs
F

Fs



 

       
2

2
2

2

2 Fs
F

Fs 






 

             
22

ss 



 

1. Frequency response of a discrete-time filter is a periodi function with period  s 

(sampling freq). 

2. From the F.S analysis we know that any periodic function can be expressed as a linear 

combination of complex exponentials. 

Therefore desired freqency response of a discrete time filter can be represented by F.S as 






 
n

nTjTj enheH )()(
  T = sampling period 

The F.S co-efficient or impulse response samples of filter can be obtained using  

h (n) =


 




 deeH
s

s

s

nTjTj
2/

2/
)(

1
 

clearly if we wish to realize this filter with impulse response h(n), then it must have finite 

no. of co-efficient, which is equivalent to truncating the infinite expansion of )( TjeH  , which 

leads to approximation of )( TjeH  , which is denoted by 




 
M

Mn

nTjTj enheH )()(1 . 

We choose M=
2

1N
, in order to keep ‘N’ no of samples in h(n). 

H1(z) = 



M

Mn

nZnh )(
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However, this filter can’t be physically realizable due to the presence of +ve powers of Z, 

means that the filter must produce an output that is advanced in time with respect to the i/p. 

This difficulty can be overcome by introducing a delay M=
2

1N
 samples. 

Therefore  H(z) = Z-M H1(z) = Z-M 



M

Mn

nZnh )(  

H(z) = h(-M)Z0 + h(-M+1) Z-1 +…. +h(M) Z-2M 

Let bi = h(i-M)  i=0 to 2M 

H(z) = 



M

i

i

i Zb
2

0
 be the transfer function of discrete filter that is physically realizable. 

Properties: 

1. N=2M+1, impulse response co-eff, bi = 0 to 2M. 

2. h(n) is symmetric about bM 

Ex:   M=4 

 

3. The duration of impulse response is Ti = 2MT 

4. Its magnitude and time delay function can be found in the following way 

)()( 1

TjMTjTj eHeeH    

)()( 1

TjTj eHeH    

This implies that magnitude response of the filter we have desired approximates the 

desire magnitude response. The time delay of H(ejw) is a constant M. thus sinusoids of 

different frequencies are delayed by the same amount as they are processed by the filter, we 
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have designed. Consequently, this is a linear phase filter, which means that it does not 

introduce phase distortion. 

Ex: 

Design a LPF (FIR) filter with frequency response  

 

1)( TjeH  for c  

    = 0   for 
2

s
c


  

h(n) = 
 





 de
s

c

c

nTj1
 

        = 
 



dnTCos
s

c

0
)(

2
 

        

 = nT

cnTSin

s





2
  

        

=
cnTSin

n
cnTSin

Fs
Fsn






1

1
.2

2
 

bi = h(i-M) 

 

 

 

 

 

 

 

 

 

 

 

 

w= 






Fs

Fs
T

s
T

1

2

2

2

H(z) = 



M

i

i

i Zb
2

0
 

 

Ex:  

Design LPF that approximate following freq response. 

H(F)    = 1  0F1000Hz 

 = 0  else where  1000FFs/2 

When the sampling frequency is 8000 SPS. The impulse response duration is to be 

limited to 2.5ms 
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Ti = 2MT 

M = 10

800

1
*2

10*5.2 3




  N=21 

h(n) = 
 





 de
s

c

c

nTj.1
1

 

 = dFe
Fs

Fc

Fc

FnTj 


 2.1
2

1 2

  = dFFnTCos
Fs

dFe
Fs

FcFc

Fc

FnTj )2(
21

0

2

 



 

 = )25.0(
1

2
1







nSin
n

FcnTSin
n

  

________________________________________________________________ 

OR 

w = T = 
48000

1
*1000*2


   

Hc(w) = 1 4
w  

 =  0  else where 

 

 




4

4

.1
2

1





dwe jwn

= )25.0(
1




nSin
n

 

h(0) = 0.25  h(6) = -0.05305 

h(1) = 0.22508  h(7) = -0.03215 

h(2) = 0.15915  h(8) = 0 

h(3) = 0.07503  h(9) = 0.02501 

h(4) = 0  h(10) = 0.03183 

h(5) = -0.04502 

bi = h(i-10) 

H(z) = 



20

0i

i

i Zb  
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FIR HPF 

h(n) = 



 

  









c

s

s

c

nTjnTj dede
s 2/

2/

.1
1

 

 

  = 





















2/

2/

1 s

c

nTj
c

s

nTj

jnT

e

jnT

e

s
 

 = 



























jnT

eeee

s

cnTj
nT

s
jnT

s
j

cnTj 221
 

 = 
































j

ee

j

ee

nTs

nT
s

jnT
s

j
cnTjcnTj

22

12 22

 

 = 






 




22

2 nT
SinnTSin

FsnT

s
c


 

 =  nSinnT
n

c 





sin
1

  =    nT
n

c


sin
1


 

FIR BPF 

h(n) = 







u

l
dTn

s
cos

2
 =  nTnT

n
lu  sinsin

1


 

Ex: 

Desing a BPF for H(f) = 1 160  F 200Hz 

   = 0 else where 

Fs = 800SPS 

Ti = 20 ms 

M = 8

800

1
*2

10*20

2

3




T

Ti
  N = 17 
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h(n) =  nTFSinnTFSin
n

lu 


22
1

  = 




n

nn 4.0sin5.0sin 
 

h(0) = 0.1  h(4) = 0.07568   

h(1) = 0.01558  h(5) = 0.06366 

h(2) = -0.09355          h(6) = -0.05046 

h(3) = -0.04374          h(7) = -0.07220 h(8) = 0.02338   

H(z) = 



16

0i

i

i Zb  

bi = h(i-8) h(-n) = h(n) 

8.7 WINDOWING 

Disadvantage of F.S is abrupt truncation of FS expansion of the freq response. This 

truncation result in a poor convergence of the series. 

 

The abrupt truncation of infinite series is equivalent to multiplying it with the rectangular 

sequence. 

WR(n) = 1 Mn   

           = 0 else where 

)()()( nWnhnh R


 

)(*)()( jw

R

jwjw eWeHeH 

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 = 






 deWeH wj

R

j


 )()(

2

1 )(

 

WR(ejw) => FT of Rectangular Window 

WR(ejw) = 











 



2

1

2

1

.1

N

N
n

jwndwe
 = 

2

2
w

Sin

wN
Sin

 = 

2

2
w

Sa

wN
NSa

 

 

 Main lobe width = 
N

4
 & it can be reduced by increasing N, but area of side lobe will 

be constant. 

 For larger value of N, transition region can be reduced, but we will find overshoots & 

undershoots on pass band and non zero response in stop band because of larger side lobes. 

So these overshoots and leakage will not change significantly when rectangular window is 

used. This result is known as Gibbs Phenomenon. 

The desined window chts are 

1. Small width of main lobe of the frequency response of the window containing as 

much as of the total energy as possible. 

2. Side lobes of the frequency response that decrease in energy as w tends to  . 

3. even function about n=0 
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4. zero in the range 
2

1


N
n  

Let us consider the effect of tapering the rectangular window sequence linearly from the 

middle to the ends. 

Triangular Window: 

1

2
1)(




N

n
nWT   

2

1


N
n  

 = 0   else where 

In this side lobe level is smaller than that of rectangular window, being reduced from -13 

to -25dB to the maximum. However, the main lobe width is now 
N

8
. There is a trade off 

between main lobe width and side lobe levels. 

General raised cosine window is  

W(n) = 











1

2
)1(

N

n
Cos


  for 

2

1


N
n  

= 0    else where 

If  =0.5  Hanning Window 

If  =0.54 Hamming Window 

WB(n) = 0.42 + 0.5 



















 1

4
08.0

1

2

N

n
Cos

N

n
Cos


  Blackman Window 

Kaiser Window 

)(

1

2
1

)(

2





Io

N

n
Io

nWk


























    for 
2

1


N
n  

= 0     else where 

 is constant that specifies a freq response trade off between the peak height of the side 

lobe ripples and the width or energy of main lobe and Io(x) is the zeroth order modified 

Bessel function of the first kind. Io(x) can be computed from its power series expansion 

given by  
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Io(x) = 1+

2

1 2!

1



 



















k

k
x

k  

 = 1 + 2

2

)!1(

25.0 x
+
 

2

22

)!2(

25.0 x
+
 

2

32

)!3(

25.0 x
+….. 

 

Window Peak amplitude 

of side lobe dB 

Transition width 

of main lobe 

Minimum stop 

band deviation dB 

Rectangular -13 

N

4
   k=1 

-21 

Triangular -25 

N

8
   k=2 

-25 

Hanning -31 

N

8
   k=2 

-44 

Hamming -41 

N

8
   k=2 

-53 

BlackMan -57 

N

12
  k=3 

-74 

Kaiser variable variable - 

 

If we let K1,W1 and K2,W2 represent cutoff (pass band) * stop band requirements for the 

digital filter, we can use the following steps in design procedure. 

 

1. Select the window type from table to be the one highest up one list such that the stop 

band gain exceeds K2. 

2. Select no. of points in the windows function to satisfy the transition width for the type 

of window used. If Wt is the transition width, we must have Wt = W2-W1 
N

k
2

.  

where K depends on type of window used. 



 

 

132 

K=1 for rectangular, k=2 triangular….. 

Therefore  N
12

2

ww
K





 

If analog freq are given, it must be converted in to Digital using w= T 

Ex: 

Apply the Hamming Window to improve the low pass filter magnitude response ontained 

in ex1: 

WH(n) = 0.54 + 0.46 








1

2

N

n
Cos


  for 

2

1


N
n  

 = 0      else where 

N = 2M+1 = 21 

WH(0) = 1  

WH(1) = 0.97749 

WH(2) = 0.91215 

WH(3) = 0.81038 

WH(4) = 0.68215 

WH(5) = 0.54 

WH(6) = 0.39785 

WH(7) = 0.26962 

WH(8) = 0.16785 

WH(9) = 0.10251 

WH(10) = 0.08 

Next these window sequence values are multipled with coefficients h(n), obtained in ex1, 

to obtain modified F.S Co eff h’(n). 

h’(0) =0.25 

h’(1) =0.22 

h’(2) =0.14517 

h’(3) =0.0608 

h’(4) =0 

h’(5) =0.02431 

h’(6) =0.02111 

h’(7) =-0.0086725 

h’(8) =0 

h’(9) =0.00256 

h’(10) =0.00255 
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H’(z) = 



M

i

i

i Zb
2

0

'  

bi' = h’(i-M) 0 i20  h’(-n) = h’(n) 

 

Ex: 

Find a suitable window and calculate the required order the filter to design a LP digital 

filter to be used A/D-H(Z)-D/A structure that will have a -3dB cutoff of at 30  rad/sec and 

an attenuation of 50dB at 45  rad/sec. the system will use a sampling rate of 100 samples 

/sec 

Sol: 

The desired equivalent digital specifications are obtained as 

Digital ….. 3.0
100

1
301  cTww c   dBk 31   

45.0
100

1
4522  Tw    dBk 502   

1. to obtain a stop band attenuation of -50dB or more a Hamming window is shosen 

since it has the smallest transition band. 

2. the approximate no. of points needed to satisfy the transition band requirement (or the 

order of the filter ) can be found for w1 =0.3 rad &w2 = 0.45 rad, using Hamming 

window (k=2), to be 





3.045.0

2.22

12 





ww
kN =26.65 

N = 27 is selected 
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Kaiser window 

 The attractive property of the Kaiser window is that the side lobe level and main lobe 

width can be varied continuously by simple varying the parameter  . Also as in other 

window, the main lobe width can be adjusted by varying N. 

 we can find out the order of Kaiser window, N and the Kaiser parameters  to design 

FIR filter with a pass band ripple equal to or less that Ap, a minimum stop band attenuation 

equal to or greater than As, and a transition width Wt, using the following steps: 

Step 1 : Choose 𝛿 such that 𝛿 = 𝑀𝑖𝑛( 𝛿p , 𝛿s ) 

As

s

05.010 ,          [ Prove As = => As = ] 

110

110
05.0

05.0






Ap

Ap

p  

[  Prove Ap = 
p

p









1

1
log20 10  

100.05Ap = 








1

1
 

 1 100.05Ap = 1  

Therefore: solving above eq for  , we get 


1 10

1- 10
0.05Ap

0.05Ap

    ]
 

Step 2: 

Calculate As using the shosen values  

 Aso= log20  

s

p



1
log20 10 slog20
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Step 3: 

Calculate the parameter   as follows for  

  = 0       for Aso 21 dB 

     = 0.5842(Aso -21)0.4 + 0.07886(Aso -21)  for 21< Aso 50 dB 

     = 0.1102(Aso-8.7)     for Aso>50 dB 

 

Step 4: 

Calculate D as follows 

D = 0.9222   for Aso 21 dB 

    = 
36.14

95.7As
  for Aso >21 dB 

Step 5: 

Select the lowest odd value of N satisfying the inequality 

N 1




t

samD
 

Wsam : Angular Sampling frequency 

 sam : Analog Freq 

 t=  s- p  for LPF 
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      =  p- s  for HPF 

      = Min[( p1- s1), ( s2- p2)] for BPF 

      = Min[( s1 - p1), ( p2- s2)] for BSF 

-3dB cutoff freq  c can ve considered as follows 

 c =  sp 
2

1
  for LPF & HPF 

 c1 = 
2

;
2

221

tt
pcp





  for BPF 

 c1 = 
2

;
2

221

tt
pcp





  for BSF 

Ex: 

Calculate the Kaiser parameter and the no. of points in Kaiser Window to satisfy the 

following lowpass specifications. 

Pass band ripple in the freq range 0 to 1.5 rad/sec 0.1 dB 

Minimum stop band attenuation in 2.5 to 5.0 rad /s   40 dB 

Sampling frequency: 10 rad/s 

Sol: 

The impulse response samples can be calculated using h(n) =  nT
n

csin
1


 

Where  c = )5.25.1(
2

1
 =2rad/s 

And the no. of points required in this sequence can be found as follows 

Step1: 

01.010 )40(05.0  s  

3

)1.0(05.0

)1.0(05.0

10*7564.5
110

110 



p  

Therefore we choose,  310*7564.5 
 

Step 2: 

Aso = -20 log(
310*7564.5 
) = 44.797 dB 

Step 3 & 4: 
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 = 0.5842 ( 44.797  -21)0.4 + 0.07886 ( 44.797  -21) = 3.9524 

D = 2.566 

Step 5: 

N 66.261
1

)566.2(10
  => N=27 

)(

1

2
1

)(

2





Io

N

n
Io

nWk


























  

1
)(

)(
)0( 





Io

Io
Wk  

 = 9899.0
3729.10

269.10

)9524.3(

)94.3(


Io

Io
 

 

 

  



 

 

138 

9.OBJECTIVE PAPER-1 

                                                                            

1)What is the parsval’s theorem expression in DTFT : 

∑n=-∞|x(n)|2=(1/2π)∫ |𝑋(𝑤)|
𝜋

−𝜋
2dw  

 

Match the following: 

2) E = , P = 0                        a) power 

3) E  , P = 0                        b) Neither energy nor power 

4) E = , P  0, P               c) Energy 

 

Match the following 

 5) e-t u(t)                                 a) power 

 6) u(t)                                     b) Neither energy nor power 

 7) 1/t                                     c) Energy 

 

 8) x (n) = 6e j 2  n / 4
, what is the power of the signal  

a) 36W      b) 72W      c) 18W      d) none 

 

Match the following: For a real valued sequence, the DTFT follow the properties as 

9) Re [H (jw) ]                               a) Real valued function of w  

10) Im[ H(jw) ]                               b) even function of w  

11) F.T [even symmetric sequence]      c) Imaginary valued function of w 

12) F.T [odd symmetric sequence]       d) odd function of w 

 

13) x(n) = {4, 1, 3}  h(n) =   {2, 5, 0, 4}  what is the output of the system. 

               

 a) {8, 22, 11, 31, 4, 12}         b)  {8, 22, 11, 31, 4, 12}       c) {8, 22, 11, 31, 4, 12}         

d)  none  

   

14) y(n) = x(n) * h(n) then y1 (n) = {0, 0, x(n), 0 } * { 0, h(n), 0 } is equal to 

       a) {0, 0, y(n), 0}    b) {0, 0, 0, y(n), 0, 0}     c) [0, 0, y(n), 0 }  d) {0, y(n), 0, 0} 

   

15)If x(n) and h(n) are having N values each, to obtain linear convolution using circular 

convolution, the number of zeros to be appended to each sequence is 

   a) N – 1     b) 2N – 1     c) N      d) N + 1  

   

16)W4
9 = ? 

   a) – j    b) + j   c) + 1   d)  -1   

 

17) DFT [ x* (-n) ] = ? 

    a) X  * (K)     b) X  *  (-K)     c) X * (N-K)    d) none 

 

1 2 3 4 5  6 7 8 9 10 11 12 13 14 15 16 17 

 b c a c a b a b d a c c b a a a 
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10.OBJECTIVE PAPER-2 

 

1) The region of convergence of the Z-transform of a unit step function is  

a)|Z| >1  b) |Z|<1  c) (real part of Z ) >0  d) (real part of Z ) <0 

 

2) The Z T of the function f(nT) = anT is        

a) Z/(Z-aT)   b) Z/(Z+aT)  c) Z/(Z-a-T)     d) Z/(Z+a-T)   

3) The Z T of the function 





0

)(
k

kn is       

a) (Z-1)/Z  b) Z/(Z-1)2  c) Z/( Z-1)    d) (Z-1)2/Z 

 

4) The Z T of a signal is given by  X(Z)= Z-1(1-Z-4)/( 4(1-Z-1)2) its final value is  

a) ¼   b) 0   c) 1     d) infinity 

 

5) Consider the system shown in fig. The transfer function Y(Z) / X(Z) of the system is 

 

 

 x(n) y(n) 

                       + + 

 

 

 

                                          -b                                   a 

a) (1+aZ-1)/ ( 1+bZ-1)   b) (1+bZ-1)/ ( 1+aZ-1)       

c) (1+aZ-1)/ ( 1-bZ-1)      d) (1-bZ-1)/ ( 1+aZ-1) 

 

6) A linear discrete time system has the characteristic equation Z3-0.8 Z=0, the system  

a) is stable    b) is marginally stable       

c) is un stable    d) stability cannot be assessed from the given information 

 

7) The advantage of Canonic form realization is 

a) smaller no of delay elements  b) larger no of delay elements     

c) hard ware flexibility   d) none 

8) y(n) = )(
3

2

knkxa
k




  -   


5

1
)(

k
knbky    the minimum no of delay elements 

needed to realize the system is 

a) 5    b) 10   c) 8    d) 11      

 

9) Expand CSOS Ans: Cascaded form of second order section. 

       PSOS  Ans: Parallel form of Second order section 

 

10) To ensure a causal system, the total no of zeros must be less than or equal to the total 

number of poles ( T / F ) 

  

Z-1 
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1 2 3 4 5 6 7 8 9 10 

a a c c a a a c  T 

 

11) The poles or zeros at the origin do effect the magnitude response ( T / F) 

 

12) All poles and zeros of a minimum phase system lie inside the unit circle ( T / F) 

 

13) To realize FIR filter  

a) no feedback paths and forward path   b) no feedback paths and no forward path  

c) feedback paths and no forward path   d) feedback paths and forward path 

 

14) Find total no of complex multiplications using FFT for N=8: __________ 

 

15) Find total no of complex additions using FFT for N=8: __________ 

 

16) Find total no of real additions using direct DFT for N=8: __________ 

 

 

11 12 13 14 15 16 

F T a 12 24 240 

 

 

17) What is Z T of 2 (3n) u (-n-1): ____(-2)/(1-3z-1_)___ or (-2z)/(z-3)__________ 

 

18) (2M) Show the structure of  

Direct form –II for 2nd order system                        

 

 x(n) y(n) 

                                                                         a1 

 +        b1                                                                                    

                                                                             b2                                           a2 

 

19) Show the structure of butterfly                       b3                                       a3          

 

                                                                              bnp 

                                                                  anp 

  bm 

   Z 

   Z 

Z-1 

Z-1 

Z-1 

Z-1 

Z-1 
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11.OBJECTIVE PAPER-3 

State TRUE or FALSE 

1) u(n) = 





0

)(
K

kn  

2) x(n) = cos 0.5n is periodic sequence 

 

3) Discrete-time sinusoidal signals with frequency that are separated by an integral 

multiple of 2π are identical 

 

4) y(n) =x(-n) is time invariant 

 

Match the following 

5) 




)(kh        1 Zero input response 

6) Impulse response of difference equation is 2 linear 

 

7) y(n) = |x(n)|      3 Stable 

 

8) y(n) = x(n2)      4 Time invariant  

 

CHOOSE THE CORRECT ANSWER 

 

9) x(n) =  Cos 0.125n ,  what is the period of the sequence  

a) 8 b) 16  c) 125 / 2 d) none 

 

10) y (n)  = x (2n) 

a) Causal b) Non-Causal c) Time invariant d) none 

 

11) x(-n + 2) is obtained using following operartion 

a) x (-n) is delayed by two samples  b) x (-n) is advanced by two samples 

c) x (n) is shifted left by two samples d) none 

 

12) In situations where both interpolation and decimation are to be performed in 

succession, it is therefore best to  

a) Interpolate first,  then decimate  b) Decimate first and interpolate 

c) Any order we can perform  d) none 

 

1 2 3 4 5 6 7 8 9 10 11 12 

T F T F 3 1 4 2 B B A a 

13) The output of anti causal LTI system is  

a) y (n) = 





0

)()(
K

knxkh    b) y (n) = 



n

K

knxkh
0

)()(  

c) y (n) = 





1

)()( knxkh    d) y (n) = 




 )()( knxkh  
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14) (n-k) * x (n-k)  is equal to   

a) x(n-2k)  b) x(n-k)  c) x(k)   d) none 

 

15) Given x(n) the y(n) = x(2n – 6) is  

a) x(n) is Compressed by 2 and shifted by 6        b) x(n) is Compressed by 2 and 

shifted by 3 

c) x(n) is Expanded by 2 and shifted by 3  d) none 

 

16) Decimation by a factor N is equivalent to  

a) Sampling x(t) at intervals ts / N   b) Sampling x(t) at intervals tsN 

c) N fold increase in sampling rate    d) none 

 

17) In fractional delay, x(n-M/N), specify the order of operation. 

a) Decimation by N, shift by M, Interpolation by N   

b) Shift by M, Decimation by N and Interpolation by N 

c) Interpolation by N, Shift by M and Decimation by N 

d) All are correct 

 

18) Given g(n)  = }3,2,1{


, find x(n)  =  g (n / 2), using linear interpolation 

a) 1, 0, 2, 0, 3  b) 1, 1, 2, 2, 3, 3 c) 1, 3/2, 2, 5/2, 3 d) none  

 

19)   

 + y(n) 

 

       + 

 

x(n) 

 

 

In the figure shown, how do you replace whole system with single block 

a) [ h1(n) + h2(n) ] * h3(n)     b) h1(n)h3(n) * h2(n)h3(n) 

c) [ h1(n) + h2(n) ] h3(n)     d) none 

 

20 The h(n) is periodic with period N, x(n) is non periodic with M samples, the output 

y(n) is 

a) Periodic with period N     b) Periodic with period N+M 

c) Periodic with period M    d) none 

13 14 15 16 17 18 19 20 

C A B B C C A A 

      h1(n)  h3(n) 

h2(n) 
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12.OBJECTIVE PAPER-4 

 

1) If x(n) = {-1, 0, 1,  2,  1, 0, 1, 2, 1, 0, -1} What is X(0) 

 

a) 6    b) 10    c) 0    d) none 

 

2) If x(n) = 1,     |n|≤2 

        0,  other wise 

Find DTFT 

a) sin(5w)/sinw  b) sin(4w)/sinw  c) sin(2.5w)/sin(0.5w)  d) none of the above 

 

3) If x(n)=h(n)=u(n), then h(n) is equal to 

a) (n+1)u(n)   b) r(n)    c) r(n-1)   d) none 

 

4) if x ~ (n) = { 1,0,1,1} and  h ~(n) = { 1, 2, 3,1} find y  ~(n) 

a) {6 , 6, 5, 4} b) {1, 2, 4, 4}   c) {5, 4, 1, 0}  d) None 

 

5) x(n) = {4,  1,  3}  h(n) =   {2, 5, 0, 4}  what is the output of the system. 

               

 a) {8, 22, 11, 31, 4, 12}         b)  {8, 22, 11, 31, 4, 12}       c) {8, 22, 11, 31, 4, 12}    d)  

none  

   

6) y(n) = x(n) * h(n) then y1 (n) = {0, 0, x(n), 0 } * { 0, h(n), 0 } is equal to 

       a) {0, 0, y(n), 0}    b) {0, 0, 0, y(n), 0, 0}     c) [0, 0, y(n), 0 }  d) {0, y(n), 0, 0} 

   

7) If x(n) and h(n) are having N values each, to obtain linear convolution using circular 

convolution, the number of zeros to be appended to each sequence is 

   a) N – 1     b) 2N – 1     c) N      d) N + 1  

   

8)W4
9 = ? 

   a) – j    b) + j   c) + 1   d)  -1   

 

9) DFT [ x* (-n) ] = ? 

    a) X  * (K)     b) X  *  (-K)     c) X * (N-K)    d) none 

 

10) If x(n)X(K), then IDFT [ X (K), X(K) ]  = ? 

    a) x (n / 2)     b) 2x (n/2)    c) ½ x (2n)    d) none. 

 

11) Both discrete and periodic in one domain are also periodic and discrete in other 

domain (T / F) 

 

12) If h(n)= -h(-n) then H(K) is purely real      (T / F) 
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13) Reversing the N point sequence in time is equivalent to reversing the DFT values (T / 

F) 

 

14) FT of non periodic discrete time sequence is non periodic   (T / F) 

Match the following: For a real valued sequence, the DTFT follow the properties as 

15) Re [H (jw) ]                              a) Real valued function of w  

16) Im[ H(jw) ]                               b) even function of w  

17) F.T [even symmetric sequence]       c) Imaginary valued function of w 

18) F.T [odd symmetric sequence]        d) odd function of w  

                                                                      n=N-1 

19) Write DFF & IDFT formulas.        X(k)=∑x(n)Wn
nk 

                                                                      n=0     N-1 

                                                                     x(n)=(1/N)∑X(k)Wnnk  

                                                                            K=0 

20) Total no of real multiplications in DFT is:  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

A C A A C B A A A A T F T F B D A C  4n2 

 

13.OBJECTIVE PAPER-5 

 

       Choose the Correct Answers  

  

1. The Fourier transform of a finite energy discrete time signal, x(n) is defined as  [        ] 

                                                                                             

            a) X( )=  x(n) ejn       b)  X( )=  x(n) en       

                            n=-                n=- 

                                                 

            c) X( )=  x(n) e-jn       d)  X() =  x(n) e-jn       

                             n=-               n=0 

2. Inverse DFT (IDFT) of X(K) is x(n), where k=0,1,-----n-1. It is given as  [    ] 

 

a) x(n) = 
N

1
 

1

0






N

n

X(k) e N

knj 2
b) a) x(n) = 

N

1
 

1

0






N

n

X(k) e N

knj 2
 

 c) x(n) = 
N

1
 






0n

X(k) e k

knj 2
d) a) x(n) = 

N

1
 

N

n 0

 X(k) e N

knj 2
              

3. A N – periodic sequence x(n) and its DFT x(k) are known. Then the DFT of x(n) = 

(n) will be 

a) e-j2nk               b) 1          c) e-j2nok/N        d) e-j2nk /N                  [       ]    

  

4. If the length of sequence x(n) is L and h(n) is M then the length of o/p sequence of the 

circular  convolution is                        [       ] 

a) L+M      b) L+M-1   c) L  if L>M     d)  2L if L=M 
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STATE TRUE OR FALSE 

 

5. The DFT of a sequence is a continuous function of       [ ] 

 

6. The DFT of even sequence is purely imaginary and DFT of odd  

sequence is purely real        [ ] 

 

7. The circular shift of an N point sequence is equivalent to linear shift of its periodic 

extension           [ ] 

8. The multiplication of DFT of two sequences is equal to DFT of the linear convolution 

of two sequences           [ ] 

 

Fill in the blanks 

 

9. The 4-point DFT of a sequence x(n) is  ________ 

 

10. DFT of a sequence x(n) =  (n-n0) is __________ 

 

11. An N point sequence is called ________________ if it is antisymmetric about point 

zero on the circle 

 

12. The two methods of sectioned convolution are ________________ & 

_______________ 

 

13. DFT of multiplication of two sequences DFT {x1 (n)  x2(n) } = 

_____________________ 

 

14. DFT of even sequence is X(k)= ________________________& DFT of odd sequence 

is X(k) = _______________________ 

 

 

15. To get the result of linear convolution with circular convolution of sequence x(n) & 

h(n), the sequences should extended to the length of __________________                

                   

16. Match the following      

     1 DFT [ x1(n) x2(n)  ]                a) X (N-K)      

     2. DFT [ x*(n) ]                  b) 
N

1
 [ X1(k)     X2(k)]                                 

     3. DFT [ x((-n))N ]                   c)  X*(N-K)     

     

    4. X1(k) X2
*(k)                            d) x1(n)   x2(n)     

  

    e) x1(n)   x2
*(-n)   
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17. Show that the given sequence x(n) = { 1,-2,3,2,1,0} for the following conditions 

using   concentric circles. 

                     a) x(-n)                      b) x(2-n)      (2M) 

 

 

 

 

 

18. Compute 4-point DFT of a sequence x(n) = {1,2,0,2}    (2M) 

 

14.OBJECTIVE PAPER-6 

     MULTIPLE CHOICES 

1. In Impulse invariant transformation, the mapping of analog frequency  to the digital 

frequency is  

a) one to one  b) many to one  c) one to many  d) none 

2. The digital frequency in bilinear transformation is  

a) w = 2 tan-1(Ts/2)    b) w = tan-1(Ts/2)  

c) w = 2 tan-1(Ts)    d) w = 2 tan-1(/2) 

3. Which technique is  useful for designing analog LPF 

a) Butter worth filter    b) Chebyshev filter  

c)    Both a and b    d) none 

4. Which filter is more stable? 

a) Butter worth  b) Chebyshev  c) none 

5. As  increases , the magnitude response of LPF approaches with  

a) –20Ndb/oct  b) –6Ndb/oct   c) –10Ndb/dec  d) none 

6. Using Impulse invariant technique the pole at S= SP is mapped to Z-plane as  

a) Z=e-S
PTs   b) Z=e (SPTs

)    c) Z=eS
P   (Ts)    d) None 

TRUE or FALSE 

7. The disadvantage of Chebyeshev filter is less transition region     

8. The advantage of Butter worth  filter is flat magnitude response.   

9. for the given same specifications order of the Chebyshev filter is more than 

Butterworth filter                           

10.  Poles of Butterworth filter lies on circle.                 

 

 

 

 

FILL IN THE BLANKS 

11. The Butterworth LPF of order N is defined as: 1/(1+(s/jΩc)
2N) 

1 2 3 4 5 6 7 8 9 10 

B A C A B B F T F T 

1=          2=              3=          4= 
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12. For N=3 what are the stable Butter worth angles :1200,1800,2400 

13.  –0.5db convert in to gain equivalent =0.994 

 

14. Let S1,2 = 2076e±j144° Ha(S)=     k/(s2-10552.7s+(2076π)2    (2M) 

 

15. Given s = 2000; Ts = 10-4 ; *
s   = 2006 

 

 

16. Using Bi-linear transformation, the pole at S = Sp is mapped into Z-plane using     

(2M)  

           Z=1-(2+SpTS)/(2-SpTs) 

 

17. Given allowable ripples in Pass band is –3 dB, the value of  is 0.997       (2M) 

 

 

15.OBJECTIVE PAPER-7 

Choose the correct Answer 

 

1. In impulse invariant transformation the mapping of analog frequency  to digital 

frequency  is            [ ] 

a) one to one            b) many to one             c) one to many none 

 

2. The digital frequency in Bi –linear transformation is     [ ] 

a)  = 2 tan-1( T /2)           b)  =  tan-1( T /2)   

c)  = 2 tan-1( T )             d)  = 2 tan-1(  /2) 

3. Using bilenear transformation for T = 1sec the pole pk is in S- Plane is mapped to Z – 

plane  using             [ ] 

a) S = 2    
1

1

1

1








z

z
                 b) S  =  

1

1

1

1








z

z
     c)  S =  2 

1

1

1

1








z

z
    d)  S=

1

1





Z

Z
 

 

4. The normalized magnitude response of chebyshev type – I filter has a value of 

____________ at cut off frequency are        [ ] 

a) 
21

1


       b) 

1

1
     c) 

21

1


      d) 21   

 

5. For high pass analog filter the transformation used is    [ ] 

a) SS/       b) S  /S       c) SS/c       d) S c /S   

 

6. The magnitude response of Type I – chebyshev LPF is given by   [ ] 

a) 
2

)(aH = 
)/(1

1
2

cNC  
     b) 

2
)(aH = 

)/(1

1
22

cNC  
 

c) 
2

)(aH = 
)/(1

1
22

cNC 
    d) )(aH = 

)/(1

1
2

cNC  
 



 

 

148 

 

7. The width of main lobe in rectangular window spectrum is   [ ] 

a)  2/N       b) 4/N       c) 8/N       d) 16/N   

 

8. The width of main lobe in Hamming window  is     [ ] 

a) 4/N       b) 2/N       c) 8/N       d) 16/N   

9. The frequency response of rectangular window WR(w ) is    [ ] 

a) 
2/

2/

Sinw

Sinwn
    b) 

Sinw

Sinwn 2/
    c) 

Sinwn

Sinwn 2/
      d) 

2/

2/

Sinwn

Sinwn
 

        

       

10. In …………………. Window spectrum the width of main lobe is double that of 

rectangular window for same value of N       [ ] 

a) Hamming window  b) Kaiser window       c) Blackman window    d) none   

 

 

State TRUE or FALSE 

 

11. The disadvantage of chebyshev filter is less transition region   [ ] 

 

12. For chebyshev Type 2 filter ripples are present in pass band  

and stop band            [ ] 

 

13. The advantage of Butter worth filter is flat magnitude response.   [ ] 

 

14. for cheby shev Type 1 filter equi–ripples are present only    [ ] 

in pass band.         

 

15. For same specifications, the order N of chebyshev  filter is less compared to Butter 

worth filter.            [ ] 

 

16. FIR filter have non-linear phase characteristics.     [ ] 

 

17. FIR filters are non – recursive and stable filters.     [ ] 

18. The design of Digital transformation H (z) of IIR filter is direct  and FIR is indirect 

                                        [  ] 

 

19. Poles of chebyshev filter lies on circle       [ ] 

 

20. In FIR filter with constant phase delay the impulse  response is symmetric   

             [ ] 
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16.OBJECTIVE PAPER-8 

 

CHOOSE THE CORRECT ANSWER  

1. The DTFT of a sequence x(n) is       [ ] 

a) 





n

jwnenx )(          b) 




n

jwnenx )(       c) dwenx jwn








)(     d) dwenx jwn










)(  

 

2. DTFT of  ejwon x(n) is        [ ] 

 a) x[ e )( owwj  ]        b) x[ e )( owwj  ]        c) x[ e
)( owwj
]        d) x[ e )( owwj  ]  

 

3. DTFT of x1[n]   *  x2[n] is        [ ] 

 a) X1[w] X2[w]     b) 
N

1
X1[w] X2[w]    c)  X1[w]  * X2[w]    d) 

N

1
X1[w]  * X2[w]    

4. The smallest value of N for which x(n +N) = x(n) holds is called  [ ] 

a) Fundamental period  b) Fundamental frequency  c) fundamental signal  d) None 

 

     5. DFS of real part of periodic signal is      [ ] 

          a) Xe(K)                 b) Xo (K)     c) XR(K)          d) XIm(K) 

 

    6. Expression for DFT is         [ ] 

         a) 




1

0

)(
N

n

Kn

NWnx      b) 





1

0

)(
N

n

Kn

NWnx          C) 




1

0

)(
N

K

Kn

NWnx      d) 





1

0

)(
N

n

Kn

NWnx  

 

    7. DFT of x1[n] x2[n] is         [ ] 

       a) 
N

1
 X1[K]  * X2[K]  b) 

N

1
 X1[K]  + X2[K]    c) X1[K]  * X2[K]    d) X1[K]  + X2[K]   

 

   8. If M & N are the lengths of x(n) & h(n) then length of x(n) * h(n) is [ ] 

      a) M+ N –1      b)  M + N +1      c) max (M,N)      d) min (M,N) 

 

  9. Zero padding means        [ ] 

a) increasing length by adding zeros at the end of sequence    

b) Decreasing length by removing zeros at the end     

c) Inserting zeros in between the samples       d) None of the above 

II STATE TRUE OR FALSE 

 10. The F.T of discrete signal is a discrete function of      [ ] 

 

11. In a discrete signal x(n), if x(n) =x(-n) then it is called symmetric signal [ ] 

 

12. The F.T of the product of two time domain sequence is equivalent to product  

       of their F.T           [ ] 

13. The DFT of a signal can be obtained by sampling one period of FT of the signal  

[ ] 

14. DFS is same as DTFS        [ ] 
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17.OBJECTIVE PAPER-9 

CHOOSE THE CORRECT ANSWER 

1. Power signal is  

a) Periodic b) aperiodic  c) Continuous d) none  [ ] 

 

2. isW
nK

N  

a) N

Kj

e

 2

  b) nKje  2   c) N

Knj

e

 2

  d) N

Kn

e

2

  [ ] 

 

3. When the sequence is circularly shifted in time domain by ‘m’ samples i.e. x((n-m))N 

then on applying DFT, it is equivalent multiply sequence in frequency domain by 

a) N

Kmj

e

2

  b) N

Kmj

e

 2

  c) Kmje  2   d) N

Km

e

2

  [ ] 

 

4. Multiplication of sequence in time domain, on apply DFT, it corresponds to circular 

convolution in frequency domain and is given as  

a) x1(n) x2(n)  DFT X1(K)        X2(K) 

b) x1(n) x2(n)  DFT X1(K)X2(K) 

c) x1(n) * x2(n)  DFT X1(K)        X2(K) 

d) x1(n) x2(n)  DFT 




1

0

N

K

X1(K)X2(K) 

 

5. Linear convolution of two sequences N1 and N2 produces an output sequence of length  

a) N1 – N2 +1 b) N1 + N2 –1  c) N1 + N2 +1 d) 2N1 – N2 +1[ ] 

 

FILL IN THE BLANKS 

6. The basic signal flow graph for butterfly computation of DIT-FFT is  

 

7. The Fourier transform of discrete time signal is called ……………………… 

 

8. FFT’s are based on the ………………………….. of an N-point DFT into 

successively smaller DFT’s. 

 

9. The Fourier transform of x(n)*h(n) is equal to ………………………….. 

 

10. Appending zeros to a sequence in order to increase the size or length of the sequence 

is called …………………….. 

 

11. In N-point DFT using radix 2 FFT, the decimation is performed …………… times. 

 

12. In 8-point DFT by radix 2 FFT, there are …………… stages of computations with 

…………………….. butterflies per stage.  

 

13. If DFT of x(n) is X(K), then DFT of 
ln

NW x(n) is ……………………. 
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ANSWER THE FOLLOWING 

 

14. What are the differences between linear and circular convolution? 

 

 

 

 

15. How many multiplications and additions are required to compute N-point DFT using 

radix 2 FFT 

 

 

 

 

 

16. How many multiplications and additions are required to compute N-point DFT 

 

 

 

 

 

17. What is the expression for N-point DFT of a sequence x(n) ? 

 

 

 

 

 

18. What is the expression for N-point IDFT of a sequence X(K) ? 

 

 

 

 

19. Define Aliasing error. 

 

 

 

20. What is meant by Inplace computation. 
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18.OBJECTIVE PAPER-10 

1. How we can calculate IDFT using FFT algorithm.    (2M) 

 

 

 

 

 

 

 

 

2. Draw the basic butterfly diagram for DIF algorithm. 

 

 

 

 

 

 

3. Z[x(n)] = X(Z) then Z{x(n-m)} = ………………………………….. 

 

4. Define convolution property in Z-Transform. 

 

 

 

 

5. Find the Z-Transform and ROC for the signal x(n) = an u(n). 

 

 

 

 

6. Find the Z-Transform and ROC for the signal x(n) = - an u(-n-1). 

 

 

 

 

7. Write the initial value theorem expression. 

 

 

 

8. Z{(n)} = …………………….. 

 

9. Find inverse Z-Transform for X(z) = 
1Z

Z
when ROC is Z<1 

 

 



 

 

153 

 

 

10. What are the differences and similarities between DIT and DIF algorithms. (2M) 

 

 

 

 

 

 

11. Give the Direct form II realization for second order system. 

 

 

 

 

 

 

12. Give the Direct for I realization for second order system. 

 

 

 

 

 

 

13. What is the relationship between Z-Transform and Fourier transform. 

 

 

 

 

 

STATE TRUE OR FALSE: 

 

14. ROC of a causal signal is the exterior of a circle of some radius r. [ ] 

 

15. ROC of a anti causal signal is the exterior of a circle of some radius r. [ ] 

 

16. ROC of a two sided finite duration frequency is entire Z-plane.  [ ] 

 

17. Direct form I required less no.of memory elements as compared to Canonic form.[  ] 

18. A linear time invariant system with a system function H(Z) is BIBO stable if and only 

if the ROC for H(Z) contains unit circle.                 [ ] 
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19.OBJECTIVE PAPER-11 

 

ANSWER THE FOLLOWING 

 

1. What are the advantages of digital filter over analog filter. 

 

 

 

 

 

2. What is the relation between analog and digital radiant frequency in Impulse 

Invariance design.. 

 

 

 

 

3. What is the relation between analog and digital radiant frequency in Bilinear 

transformation design. 

 

 

 

 

4. What are the drawbacks with Impulse Invariance method? 

 

 

 

 

5. What is the disadvantage with Bilinear transformation technique. 

 

 

 

 

6. What is the relation between S & Z in Bilinear transformation? 

 

 

 

 

7. Mention any two techniques to design IIR Filter from analog filter. 

 

 

 

8. What are the differences between Chebyshev type I and type II. 

 

 

 



 

 

155 

 

9. What are the differences between Butterworth & Chebyshev filter. 

 

 

 

 

10. What is the expression for magnitude squared frequency response of Butterworth 

analog filter? 

 

 

 

 

11. What is the expression for magnitude squared frequency response of Chebyshev 

analog filter? 

 

 

 

 

TRUE OR FALSE 

12. Poles of Butterworth filter lies on circle.      [ ] 

 

13. Poles of Chebyshev filter lies on circle.      [ ] 

 

14. Transition bandwidth for Chebyshev is more as compared to Butterworth filter.[ ] 

15. Butterworth filters are all pole filters.       [ ] 

 

16. Chebyshev, type-II are all pole filters.       [ ] 

 

17. Chebyshev, type II filter exhibit equiripple behavior in the pass band and monotonic 

characteristic in the stopband.         [ ] 

 

18. Chebyshev, type I filter exhibit equiripple behavior in the pass band and monotonic 

characteristic in the stopband.         [ ] 

 

19. Butterworth filter exhibit monotonic behavior both in passband and stopband.[ ] 

 

20. For the given specifications order of the Chebyshev filter is more as compared to 

Butterworth filter.            [ ] 
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20. OBJECTIVE PAPER-12 

 

1. Define the following  

 

a. Time variant system with an example(Equation) 

 

 

 

b. Power signal with an example 

 

 

 

c. Dynamic system 

 

 

 

d. Recursive System 

 

 

 

e. Non Recursive system 

 

 

 

2. Give the example for FIR and IIR systems. 

 

 

 

3. Give an example of Causal system 

 

 

 

4. Write the condition to test the Linearity of the system 

 

 

 

5. Plot y(n) = x(n-2) Give x(n) ={1,2,3,5,6}  

 

 

 

 

 

6. Resolve the signal into impulse x(n)={4,5,4,4}            ------ 2 Marks 
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7. Give the expression for Convolution sum y(n)=           

 

 

 

8. Find the Convolution Sum Graphically with all the steps-------3 Marks 

   x(n)=              2        1  h(n)=        1   1 

 

                            -1       0                                 0    1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. Write the properties of Convolution Sum   --------2 Marks 

 

 

 

 

10. Write the expression for X(n) in terms of impulses 

 

 

 

 

 

 

11. Write the necessary condition  for the stability of the system 

 

 

 

 

 

  

12. Write the general form of Difference equation 
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21.OBJECTIVE PAPER-13 

       State TRUE or FALSE 

 

1. In direct –form II realization the number of memory locations required is more than 

that of direct form –I realization         [ ] 

 

2. An LTI system having system function H(z) is stable if and only if all poles of H(z) 

are out side the unit circle.        [ ] 

 

 

3. The inverse Z – transform of z/z-a is an u(n)      [ ] 

 

4. Digital filters are not realizable for ideal case.    [ ] 

 

5. As the order of Butter worth filter increases than the response is closer to ideal filter 

response.           [ ] 

Answer the following  

 

6. Find the transfer function H(z) of the given difference equation  

Y(n) = 0.7 y(n-1) – 0.12y(n-2) + x(n-1) + x(n-2) 

 

 

 

 

 

7. Indicate the poles and zeros of the given system and also check the stability of the 

system  

H(z) = 
)5.0)(4.0)(2.0(

)1(





zzz

zz
        (2M) 

 

 

 

 

 

 

8. Realize the given system function H(z) using direct form –II        

H(z) = 
21

21

2.01.01

6.06.33








zz

zz
         (2M) 
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9. Realize the given system function H(z) using cascade form    (2M) 

H(z) = 
)5.01)(5.01(

1
11   zz

 

 

 

 

 

 

 

10. Find the inverse z-transform of x(z) = 
)3)(2(  zz

z
 using partial fraction method. 

(2M) 

 

 

 

 

 

11. Using cauchy residue method find the inverse z- transform of  

x(z) = 
)2)(1(  zz

z
 for ROC :z >2       (2M) 

 

 

 

 

 

12. Mention the two conditions to realize  any digital  filter   

 

   

 

13. Draw the Magnitude response of Low Pass Butter Worth filter. 

 

 

 

 

 

 

14. The order of the Butter Worth filter is obtained by using the formula N 

______________________ 

 

15. The cut- off frequency c is obtained by using the formula 

___________________________ 
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22.OBJECTIVE PAPER-14 

 

Fill in the Blanks 

1. The expansion of FFT is _______________ 

 

2. The main advantage of FFT is  _____________ 

 

3. The number of multiplications needed in the calculation of DFT using FFT with 32-

point sequence = ________________ 

 

4. __________________ number of additions are required to compute N – pt DFT using 

radix –2  FFT. 

 

5. What is decimation in time algorithm. 

 

State TRUE or FALSE 

 

6. For DIT –FFT algorithm the input is bit reversed and the output is in natural order 

[ ] 

 

7. By using radix –2 DIT –FFT algorithm it is possible to calculate 6-point DFT.[ ] 

 

8. 1NK

NW            [ ] 

 

9. 12/ NK

NW            [ ] 

 

10. In DIT –FFT,  the input sequence is divided into smaller subsequences  [ ] 

 

Answer the following 

 

11. Calculate the DFT of the sequence x(n)={1,0,0,1} using DIT –FFT          (2M) 

12. Draw the Butterfly diagram for 8-point DFT using DIT –FFT algorithm    (2M) 

 

 

 

 

 

 

13. Find IDFT of the sequence X(k) = { 10, 0, 10, 0}    (2M) 
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      14. Write the steps for the calculation of IDFT using DIT –FFT                 (2M) 

 

 

 

 

 

 

15.Write the values of the following  

 a) 0

8W         b) 2

8W         c) 3

8W        d) 5

8W  

23.OBJECTIVE PAPER-15 

      CHOOSE THE CURRECT ANSWER 

 

1. y(n)=x(2n) is a ____________ system      [ ] 

a) time invariant        b) causal    c) non causal     d) none 

 

     2.   y(n) = nx2(n) is a ____________system      [ ] 

 a) Linear      b) Non-linear        c) time-invariant   d) none 

 

    3.   y(n)= x(n) +x(n-1) is a ____________ system    [ ] 

 a) Dynamic     b) Static    c) time variant  d) None 

 

    4. x(-n+2) is obtained by which of the following operations  [ ] 

 a) x(-n) is shifted left by 2 samples     b) x(-n) is shifted right by 2 samples 

 c) x(n)  is shifted  left by 2 samples     d0 none 

 

   5. The necessary and sufficient condition for causality of an LTI system is [ ] 

 a) h(n) =0 for n=0     b)  h(n) =0 for n>0     c) h(n) =0 for n<0      

 d) none  

 

   6. The convolution of two sequences x(n) =h(n) = {1, 2, -1}    [ ] 

 a) { 1,4,2,-4,1}     b) {1,-4,1,2,4}     c) { 1,1,2,-4,4} 

 d) { 4,-4,2,1,1} 

 

II STATE TRUE OR FALSE 

 

   7. An IIR system exhibits an impulse response for finite interval      [  T/F ] 

 

   8.  If the energy of a signal is infinite then it is called energy signal      [  T/F ] 

 

   9. Static systems does not require memory     [  T/F ] 

 

10. A linear system is stable if its impulse response is absolutely summable[T/F ] 
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III Answer the following: 

 

11. The average power of a discrete time signal with period N is given by ___________ 

 

12. The convolution sum of causal system with causal sequence is ____________ 

 

 

 

 

13. Give the graphical representation of the following discrete signals. 

 

i) x(n) = (5-x) [ 4(x) – 4(x-3)} 

 

 

 

 

 

ii) x(n) = -0.5(n+1) + 0.5(n) – 0.75 (n-2) 

 

 

 

 

 

 

 

14. x(n) = {3, -2, 1,0,-1} show for x(-n)      (1M) 

 

 

 

 

 

15. If x(n) = {1,2,-2,-1} show for x(n-2) & X( -n+2)    (2M) 

 

 

 

 

 

 

 

 

16. Find the convolution of u(n) * u(n-2)      (1M) 
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17. If the impulse response h(n) = 2n u( -n) then determine the corresponding system is   

causal or stable.          (1M) 

 

 

 

 

18. Test the given discrete system  for linearity , causality and time invariance  

      h(n) = n ex(n)         ( 2M) 

ASSIGNMENT  

1 (a) Draw the frequency response of N-point rectangular window. 

(b) Design a fifth order band pass linear phase filter for the following specifications. 

i. Lower cut-off frequency = 0.4 πrad/sec 

ii. Upper cut-off frequency = 0.6 πrad/sec 

iii. Window type = Hamming 

Draw the filter structure. [4+12] 

 

2) Design a band pass filter to pass frequencies in the range 1-2 radians/second using 

Hanning window N=5. Draw the filter structure and plot its spectrum. [16] 

 

3) (a) Compare the performances of rectangular window, hamming window and Keiser 

window 

(b) The desired response of a low pass filter is 

Hd(ej!) = _ e−j3!, −3π _ ω _ 3π/4 

0 , 3π/4 _ |ω| _ π 

Determine H(ej!) for M=7 using a Hamming window. [6+10] 

 

4) (a) Design a linear phase low pass filter with a cut-off frequency of π/2 

radians/seconds. Take N=7 

(b) Derive the magnitude and phase functions of Finite Impulse Response filter when 

i. impulse response is symmetric & N is odd 

ii. impulse response is symmetric & N is even. [8+8] 

 

5) (a) Design a low pass filter by the Fourier series method for a seven stage with cut-off 

frequency at 300 Hz if ts = 1msec. Use hanning window. 

(b) Explain in detail, the linear phase response and frequency response properties of 

Finite Impulse Response filters. [8+8] 

 

6) (a) Outline the steps involved in the design of FIR filter using windows. 

(b) Determine the frequency response of FIR filter defined by y(n) = 0.25x(n)+ x(n-1)+ 

0.25x(n-2). Calculate the phase delay and group delay. [8+8] 

 

7) (a) Define Infinite Impulse Response & Finite Impulse Response filters and com-pare. 
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    (b) Design a low pass Finite Impulse Response filter with a rectangular window for a 

five stage filter given: Sampling time 1 msec; fc = 200Hz.Draw the filter structure with 

minimum number of multipliers. [6+10] 

 

ASSIGNMENT  

1) a) What are the advantages of Multirate signal processing? 

     b) Differentiate between Decimator and Interpolator? 

2) Prove that spectrum of down sampler is sum of M uniformly shifted and stretched 

version of X(ejw) scaled by a factor 1/M and also discuss the aliasing effect? 

3) State and prove any one identity property in down sampler and any one identity 

property in up sampler? 

4) Let x(n)={1,3,2,5,-1,-2,2,3,2,1},find 

     a) Up sample by 2 times and down sample by 4 times  

    b) Down sample by 4 times and up sample by 2 times c) Justify why these  outputs are 

not equal. 
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