DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ELECTRICAL CIRCUIT ANALYSIS LAB MANUAL

G. NARAYANAMMA INSTITUE OF TECHNOLOGY AND SCIENCE.
(FOR WOMEN) (AUTONOMOUS)
SHAIKPET, HYDERABAD. 500104

G. NARAYANAMMA INSTITUTE OF TECHNOLOGY \& SCIENCE (For Women) [AUTONOMOUS]

Department of Electrical \& Electronics Engineering
II Year B.Tech I-Semester, EEE

ELECTRICAL CIRCUIT ANALYSIS LAB (12314)

1. Determination of Self and Mutual inductance in a Coupled Circuit. Determination of Coefficient of Coupling.
2. Verification of Thevenin's and Norton's Theorems. (with A.C. Excitation)
3. Verification of Superposition and Maximum Power Transfer Theorems. (with A.C. Excitation)
4. Locus Diagrams of RL and RC Series Circuits.
5. Generation of various signals and sequences (unit Impulse, Step, Square, saw tooth, Triangular, Sinusoidal, Ramp) and operations on signals and sequences (Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy, and Average Power) using software.
6. Simulation of Transient response of RL, RC and RLC Circuits.
7. Measurement of Active Power for Star and Delta connected balanced loads using two-wattmeter method.
8. a) Time response of first order RL network for periodic non - sinusoidal inputs Time constant and Steady state error determination.
b)Time response of first order RC network for periodic non - sinusoidal inputs Time constant and Steady state error determination.
9. a) Two port network parameters Z \& Y parameters - Analytical verification.
b) Two port network parameters Transmission Line \& Hybrid parameters Analytical verification.
10. Waveform Synthesis using Laplace Transforms.
(Narmada Byreddy)
Faculty In-charge,
ECA lab.
(Dr.P.Ramakrishna Reddy)
HOD-EEE.

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

Self and Mutual inductance in a Coupled Circuit.

Aim: Determination of self and mutual inductance in a coupled circuit. Determination of coefficient of coupling.

Apparatus:

S.NO.	Name of the Apparatus	Range	Quantity
1	1-phase Transformer	$115 / 230 \mathrm{~V} 1 \mathrm{KVA}$	1
2	Voltmeter	$0-360 \mathrm{~V} / 600 \mathrm{~V}(\mathrm{MI})$	2
3	Ammeter	$0-1 \mathrm{~A} / 2 \mathrm{~A}(\mathrm{MI})$	1
4	1-phase variac	$230 \mathrm{~V} / 0-270 \mathrm{~V}$	1
5	Digital multimeter	-	1
6	Connecting wires	-	As required

Name plate details of Single phase transformer:

KVA: 1
Phase: 1-phase, 50 Hz
V-primary: 230 V , A-primary: 4.35A
V-secondary: 115 V , A-secondary: 81.74 A
Type: 1-phase, DW.

Theory:

Self Inductance(\mathbf{L}) : When a current is changing in a circuit, the magnetic flux linking the same circuit changes and an emf isinduced in the circuit. We can derive an expression for the selfinductance of a coil from Faraday's law of electromagnetic induction.
$\mathrm{V}_{\mathrm{L}}=-\mathrm{N}(\mathrm{d} \phi / \mathrm{dt})$
Where:
$\mathrm{V}_{\mathrm{L}}=$ induced voltage in volts
$\mathrm{N}=$ number of turns in the coil
$\mathrm{d} \varphi / \mathrm{dt}=$ rate of change of magnetic flux in webers / second
Alternatively, the induced voltage in an inductor may also be expressed in terms of the inductance (in henries) and the rate of change of current.
$\mathrm{V}_{\mathrm{L}}=-\mathrm{L}(\mathrm{di} / \mathrm{dt})$ volts
Or
$\mathrm{E}=-\mathrm{L}(\mathrm{di} / \mathrm{dt})$ volts

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

Self and Mutual inductance in a Coupled Circuit.

Mutual Inductance(M): When two coils are brought in proximity to each other, the magnetic field in one of the coils tends to link with the other. This further leads to the generation of voltage in the second coil. The amount of flux linked with the second circuit depends on the geometry of two circuits and in theabsences of any non-linear magnetic materials, it will be proportional to the current in the first circuit. This property of a coil which affects or changes the current and voltage in a secondary coil is called mutual inductance. Has same unit as selfinductance.

Series Aiding: When the two coils are connected for additive polarity, the fluxes produced by the current in the two coils will aid each other and hence the impedance is high. In this case the mutual inductance terms will have the samesign as that of the self-inductance terms. Thus, if the two coils having inductance L1 and L2 respectively and a mutual inductance of M between them are connected for additive polarity, the equivalent inductance $\mathrm{Leq}=\mathrm{L} 1+\mathrm{L} 2+2 \mathrm{M}$.

Series Opposing:

When the two coils are connected for subtractive polarity, the two fluxes will oppose each other and the inductance and hence the impedance is low. In this case the mutual inductance terms will have the opposite signas that of the self inductance terms. Hence the equivalent inductance Leq=L1+L2-2M

Thus the coefficient of coupling is calculated by the formulae $\quad \mathrm{Leq}=\mathrm{L} 1+\mathrm{L} 2+2 \mathrm{M} \quad$ henery
Leq=L1+L2-2M henery

$$
\mathrm{K}=M / \sqrt{L_{1} L_{2}}
$$

G.N.I.T.S. - EEE DEPARTMENT

ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech-I Semester
Experiment No:1
Self and Mutual inductance in a Coupled Circuit.

CIRCUIT DIAGRAMS:

Circuit(1): Circuit to find L1.

Tabular column for L1:

S.No	V_{1} (V)	I_{1} (A)	$\overline{Z_{1}}=\mathbf{V}_{1} / \mathbf{I}_{1}$ $(\boldsymbol{\Omega})$	$X_{1}=\sqrt{Z_{1}^{2}-R_{1}^{2}}$ (Ω)	$\mathbf{L}_{1}=\mathbf{X}_{1} / \omega$ (H)

Circuit (2): Circuit to find L2.

Tabular column for L2:

S.No.	\mathbf{V}_{2} (volts)	$\mathbf{I}_{\mathbf{2}}$ (amps)	$\mathbf{Z}_{2}=\mathbf{V}_{2} / \mathbf{I}_{2}(\mathbf{\Omega})$	$X_{2}=\sqrt{Z_{2}^{2}-R_{2}^{2}}$ (Ω)	$\mathbf{L}_{\mathbf{2}}=\mathbf{X}_{2} / \boldsymbol{\omega}$ (\mathbf{H})

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech-I Semester
Experiment No:1
Self and Mutual inductance in a Coupled Circuit. Circuit(3): Circuit to find $L_{E q}$

Tabular column for Leq:

S.No	V(volts)	I(amps)	Zeq=V/I($\mathbf{\Omega})$	$X_{e q}=\sqrt{Z_{e q}^{2}-R_{e q}^{2}}$ $(\mathbf{\Omega})$	Leq=Xeq/ $\mathbf{\omega (\mathbf { H })}$

Calculations:

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech-I Semester
Experiment No:1
Self and Mutual inductance in a Coupled Circuit.

Procedure:

For determination of L1:

1. Connections are made as shown in circuit (1).
2. Rated voltage is applied through the variac and corresponding readings of V and I are noted.
3. Resistance of the winding is measured using multimeter
4. Unknown parameter is calculated.

For determination of L2:

1. Connections are made as shown in circuit (2).
2. Rated voltage is applied through the variac and corresponding readings of V and I are noted.
3. Resistance of the winding is measured using multimeter
4. Unknown parameter is calculated.

For determination of Leq:

1. Connections are made as shown in circuit (3).
2. Voltage is applied through the variac and corresponding readings of V and I are noted.
3. Resistance of the winding is measured using multimeter
4. Unknown parameter is calculated.

Result:

G.N.I.T.S. - EEE DEPARTMENT
ELECTRICAL CIRCUIT ANALYSIS LAB
Experiment No.-2

EXPERIMENTAL VERIFICATION OF THEVENIN'S AND NORTON'S THEOREMS WITH AC EXCITATION.

Aim: Verification of Thevenin's and Norton's theorems with AC excitation both theoretically and practically.

Apparatus:

S.NO.	Name of the Apparatus	Range	Quantity
1	1 -phase variac	$230 / O-270$ V	1
2	Rheostat	$100 \Omega / 5 \mathrm{~A}$	3
3	Resistor	50Ω	
4	Inductor	$1-\mathrm{phase}$ variable	2
5	Ammeter	$0-2 A$	2
6	Digital Multimeter	-	1
7	LCR meter	-	1
8	Connecting wires	-	1

Safety pre-cautions:

1. There should not be any loose connections in the circuit.
2. Circuit connections have to be verified by the concemed staff member before switching on the supply.
3. Do not touch any instrument in the circuit when the supply is on.
4. Readings have to be taken without parallax error.
5. Variables supplies should b/ made zero before tuming off the main supply.
6. In case of any sparks or wire buming smell, Unplug or power off any device causing the fire, if it is safe to do so. The breaker box is another option to tum off the power immediately.

ELECTRICAL CIRCUIT ANALYSIS LAB

Theory:

Thevenin's theorem:

Statement - In any linear, bilateral network with several voltage/current sources and impedances can be replaced by a single equivalent voltage source(Thevenin voltage- $V_{t h}$) in series with a single equivalent impedance(Thevenin impedance- $Z_{t h}$) connected in series with the load. The equivalent voltage source is the open circuit voltage measured across the load terminals and the equivalent impedance is the impedance measured across the load terminals across the load terminals by replacing the sources with their internal resistance, i.e., short circuiting the voltage sources and open circuiting the current sources. The basic procedure for solving a given circuit using Thevenin's theorem is as follows: (Theoretical procedure)

1. Find the current flowing through theload resistor R_{L}.
2. Find $V_{T h}$ by the usual circuit analysis methods.
3. Remove the load resistor R_{L} or component concerned.
4. Find $Z_{T h}$ (equivalent impedance)by shorting all voltage sources or by open circuiting all the current sources. Solve the network to $Z_{T h}$ find the equivalent impedance using any one of the network reduction techniques.
5. Draw the equivalent circuit with $V_{T h}$ in series with $Z_{T h}$ and load resistor. Find the current flowing through the load resistor. If the current in step 1 and step 5 are same, then the Thevenin's theorem is verified.

Norton's theorem:

Statement - In any linear, bilateral network with several voltage/ current sources and impedances can be replaced by a single equivalent current source (Norton's current- I_{N}) in parallel with a single equivalent impedance (Norton's equivalent impedance- Z_{N}) connected in parallel to the load. The equivalent current source is the short circuit current measured by shorting the load terminals and the equivalent impedance is the impedance measured across the load terminals by replacing the sources with their intemal resistance, i.e., short circuiting the voltage sources and open circuiting the current sources.

The basic procedure for solving a given circuit using Norton's theorem is as follows: (Theoretical procedure)

1. Find the current flowing through theload resistor R_{L}.
2. Find I_{N} by usual circuit analysis methods after short circuiting the load terminals.
3. Remove the load resistor R_{L} or component concemed.
4. Find Z_{N} (equivalent impedance) by shorting all voltage sources or by open circuiting all the current sources. Solve the network to Z_{N} find the equivalent impedance using any one of the network reduction techniques (Note: As Thevenin's and Norton's Theorems are done together, Z_{N} will be same as $Z_{\tau h^{-}}$)
5. Draw the equivalent circuit with I_{N} in parallel with $Z_{T h}$ and also load resistor. Find the current flowing through the load resistor. If the current in step 1 and step 5 are same, then the Norton's theorem is verified.
Note: Students are expected to do the theoretical analysis prior to the experimental analysis to choose proper meters.

ELECTRICAL CIRCUIT ANALYSIS LAB

CIRCUIT DIAGRAMS:

Circuit-1: Main circuit: To find current through the load resistor. (Common for BOTH Thevenin's and Norton's Theorems)

Circuit-2: To measure Thevenin voltage $V_{T h}$:

Circuit-3: Circuit to find $Z_{t h}: R_{t h} \& L_{t h}$ are measured across terminals A\&B, using appropriate meters:

Circuit-4: Thevenin's Equivalent Circuit.

ELECTRICAL CIRCUIT ANALYSIS LAB

Circuit-5: Circuit for measuring Norton's current $\left(I_{N}\right)$:

Circuit-6: Norton's Equivalent circuit:

Observations:

Given: $\boldsymbol{R}_{1}=\quad ; R_{2}=\quad ; R_{L}=\quad ; L_{1}=\quad ; X_{1} \quad ; L_{2}=\quad ; X_{2}=;($ With respective units)

Tabular column for Thevenin's Theorems:

$\begin{aligned} & \text { Input voltage } \\ & \left(V_{i n}\right) \mathrm{V} \text {. } \end{aligned}$	Load current $\left(I_{L}\right) ;$ (From circuit-1) in Amps.	$\begin{aligned} & \text { Thevenin's } \\ & \text { voltage }\left(V_{t h}\right) \\ & \text { V. } \end{aligned}$	$\begin{gathered} \text { Equivalent } \\ \text { Impedance } \\ Z_{T h}= \\ R_{T h}+j X_{T h} \\ \text { (Or) } \\ Z_{N}=R_{N}+j X_{N} \\ \text { in ohms. } \end{gathered}$	Thevenin's equivalent current $\left(I_{L-T h}^{\prime}\right)$ (A).	Verification of the theorem. $I_{L}=I_{L-T h} .$

Tabular column for Norton's Theorems:

$\begin{aligned} & \text { Input voltage } \\ & \left(V_{i n}\right) \mathrm{V} \text {. } \end{aligned}$	Load current (I_{L}); (From circuit-1) in amps.	Norton's current $\left(I_{N}\right)$ (A).	```Equivalent Impedance \(Z_{T h}=\) \(R_{T h}+\mathrm{j} X_{T h}\) (Or) \(Z_{N}=R_{N}+\mathrm{j} X_{N}\) in ohms.```	Norton's equivalent current $\left(I_{L-N}\right)$ (A).	Verification of the theorem. $I_{L}=I_{L-N} .$
					Ac

Calculations:

Procedure (Experimental verification):

Thevenin's Theorem:

1. Connections are made as shown in circuit -1 , with appropriate values of passive elements and source.
2. Excitation (Ex: $25 \mathrm{~V}, 50 \mathrm{~V}$, etc.) is given and the response in the load ammeter $\left(I_{L}\right)$ is measured.
3. To find equivalent voltage $\left(V_{T h}\right)$, the voltmeter is connected across the terminals A \& B in circuit-2, and $V_{T h}$ is measured by giving the excitation to the circuit.
4. The terminals where the voltage source is connected are short circuited and the load resistance $\left(R_{L}\right)$ between the terminals $\mathrm{A} \& \mathrm{~B}$ is removed as shown in circuit -3 .
5. The equivalent resistance and inductance are measured at the terminals $A \& B$ by using a LCR meter and reactance is calculated.
6. Thevenin's equivalent circuit has to be connected as shown in figure-4.
7. The source value to set equal to the Thevenin voltage $\left(V_{\text {th }}\right)$, and the response in the ammeter is the load current corresponding to the modified circuit as per Thevenin theorem. Let it be Thevenin load current $\left(\mathrm{I}_{\mathrm{L}-\mathrm{Th}}\right)$.
8. If $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L}-\mathrm{Th}}$, Thevenin theorem is verified for the given circuit.

G.N.I.T.S. - EEE DEPARTMENT

 ELECTRICAL CIRCUIT ANALYSIS LAB

 ELECTRICAL CIRCUIT ANALYSIS LAB}

Experiment No.-2

Norton's

1. Connections are made as shown in circuit -1 , with appropriate values of passive elements and source.
2. Excitation (Ex: $25 \mathrm{~V}, 50 \mathrm{~V}$, etc.,) is given and the response in the load ammeter $\left(I_{L}\right)$ is measured.
3. Equivalent impedance $\left(Z_{N}\right)$ is combination of equivalent resistance $\left(R_{N}\right)$, and equivalent inductive reactance $\left(X_{n}\right)$, hence they have to be measured separately.
4. The terminals where the voltage source is connected are short circuited and the load resistance $\left(R_{L}\right)$ between the terminals $\mathrm{A} \& \mathrm{~B}$ is removed as shown in circuit -3 .
5. The equivalent resistance and inductance are measured at the teminals $A \& B$ by using a LCR meter and reactance is calculated.
6. To calculate the Norton's current, disconnect theload resistor and connect an ammeter between the terminals A \& B, as shown in circuit- 5 , and I_{N} is measured by giving the excitation to the circuit.
7. Connect the Norton's equivalent circuit as shown in circuit- 6 , to verify the Norton's equivalent current $\left(I_{L-N}\right)$.
8. If $\mathrm{I}_{\mathrm{L}}=\mathrm{I}_{\mathrm{L}-\mathrm{N}}$, Thevenin theorem is verified for the given circuit.

Result:

Comparison table:

Parameter (Mention the units)	Theoretical value	Practical value
Load current $\left(I_{L}\right)$		
Thevenin's voltage $\left(V_{T h}\right)$		
$R_{T h}$ or R_{N}		
$X_{\text {Th }}$ or X_{N}		
Equivalent Impedance $\left(Z_{T h}\right.$ or $\left.Z_{N}\right)$		
Norton's current $\left(I_{N}\right)$		
Thevenin's equivalent current $\left(I_{L-T h}\right)$		
Norton's equivalent current $\left(I_{L-N}\right)$		

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech,I - Semester
Experiment No. 3

Verification of Superposition and Maximum Power transfer Theorems (with A.C excitation).
Aim: Verification of (a) Superposition theorem and (b) Maximum Power transfer theorem, both theoretically and practically.
(a) Superposition theorem:

Apparatus:

S.No.	Name of the equipment	Range	No. required
1.	$1-\Phi$ variac	$230 / 0-270 /$ volts	2
2.	Rheostat	$100 \Omega / 5 \mathrm{~A}$	4
3.	$1-\Phi$ Inductor	$50-240 \mathrm{mH}$	1
4.	Ammeter	$0-2 \mathrm{~A}$	1
5.	Voltmeter	$0-300 \mathrm{~V}$	2
6.	LCR meter		1
7.	Digital Multimeter		1
8.	Connecting wires		

Theory:

Statement of Superposition theorem:

In a network with linear, bilateral elements consisting of a two or more sources, the response in any branch is equal to algebraic sum of the responses due to individual sources taken one at a time with all other sources reduced to zero, i.e., all other independent voltage sources replaced by short circuits and all other independent current sources replaced by open circuits. When a network consists of several sources, this theorem helps us to find the current in any branch easily, considering only one source at a time.

Limitations:

1. Power cannot be verified by using Superposition theorem.
2. Not applicable to unbalanced bridge circuit.

Note: Theoretical analysis of the experiment has to be done before the conduction of the experiment to design the proper range of the meters used in the experiment.
Circuit Diagrams for verification of Superposition theorem:
Circuit (i): With both sources (A \&B) active.

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech,I - Semester
Experiment No. 3

Circuit (ii): With Source - B shorted.

Circuit (iii): With Source-A shorted.

Tabular Column for Verification of Superposition theorem:

S.No.	Voltage Source $($ volts $)$	Response due to $\mathrm{A} \& \mathrm{~B}(\mathrm{I})$ (amperes)	Response due to A- $\left(\mathrm{I}_{1}\right)$ (amperes)	Response due to B- $\left(\mathrm{I}_{2}\right)$ (amperes)	 $\mathrm{I}_{2}=\mathrm{I}^{\prime}$. (amperes)
1.	$\mathrm{A}\left(V_{1}\right) \&$ $\mathrm{~B}\left(V_{2}\right)$		-	-	-
2.	$\mathrm{~A}\left(V_{1}\right)$	-	-		
3.	$\mathrm{~B}\left(V_{2}\right)$	-	-		
Superposition theorem is for the given circuit if I I=I'.					

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B. Tech, I - Semester

Procedure for verification of Superposition theorem:

1. Connections are made as per the circuit (i).
2. Excitation is given to the circuit using the variac A \& B respectively, and the response ' I ' is noted.
3. Steps $1 \& 2$ are repeated for circuit (ii) with necessary modifications in the circuit comnections and response current I_{1} is noted.
4. Steps $1 \& 2$ are repeated for circuit (iii) with necessary modifications in the circuit connections and response current I_{2} is noted.
5. Theorem is verified by checking the condition, "The algebraic sum of the responses in steps 3 and 4 has to be same as the response in step 2 ."

Theoretical Calculations:

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

II B. Tech, I - Semester
Experiment No. 3

Result:

Theoretical values(in A$)$	Practical values(in A$)$
$\mathrm{I}=$	$\mathrm{I}=$
$\mathrm{I}_{1}=$	$\mathrm{I}_{1}=$
$\mathrm{I}_{2}=$	$\mathrm{I}_{2}=$
$\mathrm{I}^{\prime}=\mathrm{I}_{1}+\mathrm{I}_{2}=$	$\mathrm{I}^{\prime}=\mathrm{I}_{1}+\mathrm{I}_{2}=$

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

(b) Verification of Maximum Power transfer theorem:

Statement of Maximum Power transfer theorem: The maximum power transfer theorem states that in a linear, bilateral DC network, maximum power is delivered to the load when the load resistance is equal to the internal resistance of a source. If it is an independent voltage source, then its series resistance (internal resistance Rs) or if it is independent current source, then its parallel resistance (internal resistance Rs) must equal to the load resistance RL to deliver maximum power to the load. This theorem gives the impedance conditions in AC circuit for maximum power transfer to a load. It states that in an active AC network consisting of source with internal impedance Z_{S} which is connected to a load Z_{L}, the maximum power transfer occurs from source to load when the load impedance is equal to the complex conjugate of source impedance Z_{S}.

Circuit Diagrams:

Main circuit for verification of Maximum power transfer theorem (for theoretical calculations):

Main Circuit with appropriate meters:

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B. Tech, I - Semester
Experiment No. 3

Tabular Column:

S.NO.	Load Voltage, V_{L} in volts	Load Current $\mathrm{I}_{\mathrm{L},}$ in amps	$\mathrm{R}_{\mathrm{L}=} \mathrm{V}_{\mathrm{L} /} \mathrm{I}_{\mathrm{L}}$ (ohms)	$\mathrm{P}=I^{2} Z_{L}$ in watt.

Expected Graph:

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

II B. Tech, I - Semester

Calculations:

Procedure:

1. Connections are made as per the circuits shown above.
2. Keep the variable rheostat in maximum position
3. Apply the rated voltage $(230 \mathrm{~V})$ through variac.
4. Voltmeter and ammeter readings are noted by varying the rheostat from maximum to minimum.
5. Graph is plotted between power (y -axis) and impedance(x-axis).
6. Practical values are compared with the theoretical values.

Result:

Comparison Table:

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

GRAPH SHEET HAS TO BE INSERTED HERE.

G.N.I.T.S. - EEE DEPARTMENT

 ELECTRICAL CIRCUIT ANALYSIS LAB

 ELECTRICAL CIRCUIT ANALYSIS LAB}

II B.Tech-I Semester
Experiment No:4

LOCUS DIAGRAMS OF RL \& RC SERIES CIRCUITS.

Aim: To draw current locus diagrams for RL and RC series circuits with R variable and C variable.

Apparatus:

S.NO.	Name of the Apparatus	Range	Quantity
1	Rheostat	$1500 \Omega / 1.2 \mathrm{~A}$	1
2	Voltmeter	$0-360 \mathrm{~V} / 600 \mathrm{~V}(\mathrm{MI})$	2
3	Ammeter	$0-1 \mathrm{~A} / 2 \mathrm{~A}(\mathrm{MI})$	1
4	1 -phase variac	$230 \mathrm{~V} / 0-270 \mathrm{~V}$	1
5	Digital multimeter	-	1
6	Inductor	1 H	1
7	Capacitor	$4 \mu \mathrm{~F}, 8 \mu \mathrm{~F}, 10 \mu \mathrm{~F}, 12.5 \mu \mathrm{~F}, 20 \mu \mathrm{~F}$	1 each
8	Connecting wires	-	As required

Theory:

In AC electrical circuits the magnitude and phase of the current vector depends upon the values of $\mathrm{R}, \mathrm{L} \& \mathrm{C}$ when the applied voltage and frequency are kept constant. The path traced by the terminus (tip) of the current vector when the parameters R, L\&C are varied is called the current Locus diagram.

Series RL circuit, with variable R:
Refer to the series RL circuit shown in the figure(a) below with constant X_{L} and varying R. The current I_{L} lags behind the applied voltage V by a phase angle $\Theta=\tan ^{-1}\left(X_{L} / R\right)$ for a given value of R as shown in the figure (b) below. When $\mathrm{R}=0$ we can see that the current is maximum equal to $\mathrm{V} / \mathrm{X}_{\mathrm{L}}$ and lies along the I axis with phase angle equal to 90°. When R is increased from zero to infinity the current gradually reduces from $\mathrm{V} / \mathrm{X}_{\mathrm{L}}$ to 0 and phase angle also reduces from 90° to 0°. As can be seen from the figure, the tip of the current vector traces the path of a semicircle with its diameter along the +ve I axis.

Figure(a): Series RL circuit with RVarying Resistance R

Figure(b): Locus of current vector I_{L} with variation of

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech-I Semester
Experiment No:4

LOCUS DIAGRAMS OF RL \& RC SERIES CIRCUITS.

$\mathrm{IL}=\mathrm{V} / \mathrm{Z}$
$\operatorname{Sin} \Theta=X L / Z$ or $Z=X L / \operatorname{Sin} \Theta$ and
$\operatorname{Cos} \Theta=\mathrm{R} / \mathrm{Z}$
Therefore, $\mathrm{IL}=(\mathrm{V} / \mathrm{XL}) \operatorname{Sin} \Theta$
For constant V and X_{L} the above expression for IL is the polar equation of a circle with diameter $(\mathrm{V} / \mathrm{XL})$ and center as (V/2XL, 0).

Series R C circuit:

(i) Variable R.

When $\mathrm{R}=0$ current is maximum and is given by $\mathrm{I}_{\max }=\frac{V}{X_{c}}$, which leads the voltage by 90°. Power factor is zero. When $R=\infty$, the current is zero. The power factor is unity \& $\emptyset=0$
For any other value of R the current leads the voltage by an angle $\emptyset=\tan ^{-1} \frac{X_{c}}{R}$
\therefore The general expression for current is

$$
I=\frac{V}{\rightarrow R^{2}+X_{L}^{2}}=\frac{V}{Z} \frac{X_{c}}{X_{c}}=\frac{V}{X_{c}} \frac{X_{c}}{Z}=\frac{V}{X_{c}} \sin \emptyset
$$

$\therefore \frac{V}{X_{c}} \sin \emptyset$ is the equation of a circle in the polar form, where $\frac{V}{X_{c}}$ is the diameter of the circle.

\therefore Locus is a semi - circle where radius is $\frac{R}{2 X_{c}}$ \& center is $\left(0, \frac{V}{2 X_{c}}\right)$

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech-I Semester
Experiment No:4

LOCUS DIAGRAMS OF RL \& RC SERIES CIRCUITS.

(ii) Variable X_{C} :

When $X_{c}=0$, current is maximum \& is given by $I_{\max }=\frac{V}{R}$, which is in phase with V. Power factor is unity and $\emptyset=0$
When $X_{c}=\infty$, the current is zero. Power factor is $0 \& \emptyset=90^{\circ}$, for any other value of X_{c}, the current leads the voltage by an angle $\emptyset=\tan ^{-1} \frac{X_{c}}{R}$

The general equation for the current is

$$
\mathrm{I}=\frac{V}{Z}=\frac{V}{\bar{Z}} \frac{R}{R}=\frac{V}{R} X \frac{R}{Z}=\frac{V}{R} \cos \emptyset
$$

The equation $I=\frac{V}{R} \cos \emptyset$ is the equation of the circle in polar form, where $\frac{V}{R}$ is the diameter of the circle.

The locus is a circle of radius $\frac{V}{2 R}$.

G.N.I.T.S. - EEE DEPARTMENT

ELECTRICAL CIRCUIT ANALYSIS LAB
II B.Tech-I Semester
Experiment No:4

LOCUS DIAGRAMS OF RL \& RC SERIES CIRCUITS.

CIRCUIT DIAGRAMS:

Circuit (1): Series R L with R varying.

Tabular column for circuit-1: $\quad \mathrm{L}=$ \qquad H, $\quad X_{\mathrm{L}}=2 \pi f L=$
Ω

S.No	$\begin{aligned} & \hline \mathrm{V} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \hline \text { I } \\ & \text { (A) } \end{aligned}$		()	$\emptyset=$	$\operatorname{Tan}^{-1}\left(X_{\mathrm{L}} / \mathrm{R}\right)$

G.N.I.T.S. - EEE DEPARTMENT

ELECTRICAL CIRCUIT ANALYSIS LAB
II B.Tech-I Semester
Experiment No:4

LOCUS DIAGRAMS OF RL \& RC SERIES CIRCUITS.

Circuit (2): Series R C with R variable.

Tabular column for circuit (2): $\mathrm{C}=$ \qquad \ldots... $X_{c}=1 / 2 \pi f C=\quad \Omega$

G.N.I.T.S. - EEE DEPARTMENT

ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech-I Semester

LOCUS DIAGRAMS OF RL \& RC SERIES CIRCUITS.

Circuit (3): Series R C with C variable:

Tabular column for circuit (3):

S.No	V(volts)	I(amps)	X_{c} ($\left.\mathbf{\Omega}\right)$	$\boldsymbol{\sigma}=\mathbf{T a n}{ }^{-1}(\mathbf{X c} / \mathbf{R})$

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech-I Semester
Experiment No: 4

LOCUS DIAGRAMS OF RL \& RC SERIES CIRCUITS.

Model graph:

As shown in theory above.

Procedure:

RL circuit:

1. Connections are made as per the respective circuits.
2. Keep the rheostat in minimum position.
3. Output voltage of the variac is set to the value equivalent to the rated current of the inductor(0.4 A).
4. Rheostat is varied from minimum to maximum and corresponding reading of ammeter and voltmeter are noted.
5. Current locus is drawn between voltage(x-axis) and current(y-axis) and angle is taken with respect to voltage.

RC circuit:

1. Connections are made as per the respective circuits.
2. Keep the rheostat in minimum position.
3. Output voltage of the variac is set to the rated voltage of capacitor .
4. Rheostat is varied from minimum to maximum and corresponding reading of ammeter and voltmeter are noted.
5. Current locus is drawn between voltage(x -axis) and current(y -axis) and angle is taken with respect to voltage.

Result:

Note: Graphs need to be attached.

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I Semester
Experiment No: 5
Generation of various signals and sequences (unit Impulse, Step, Square, saw tooth, Triangular, Sinusoidal, Ramp) and operations on signals and sequences (Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy, and Average Power) using software.
(a)Generation of various signals and sequences.

Aim: Generate various signals and sequences (Periodic and aperiodic) such as Unit Impulse, Unit Step, Square, Saw tooth, Triangular, Sinusoidal, Ramp, Sinc.

Software Required: MATLAB software.

Theory:

Unit impulse signal: The Ideal impulse function is a function that is zero everywhere but infinitely high at the origin. However, the area of the impulse is finite. It is defined as

$$
\begin{aligned}
\delta(\mathrm{t}) & =1 & \text { at } \mathrm{t}=0 \\
& =0 & \text { other wise }
\end{aligned}
$$

Unit step signal: The unit step function, also known as the Heaviside function, is defined as such:

$$
\begin{aligned}
u(t)=0 & & \text { if } t<0 \\
=1 & & \text { if } t>=0
\end{aligned}
$$

Sinc signal: The Sinc function is defined in the following manner:

$$
\begin{aligned}
& \sin c(x)=\frac{\sin \pi x}{\pi x} \text { if } \mathrm{x} \neq 0 \text { and } \\
& \operatorname{Sin} \mathrm{c}(\mathrm{x})=1 \text { at } \mathrm{x}=0
\end{aligned}
$$

Following are some of the MATLAB functions used to plot the graphs.
$\operatorname{Plot}(\mathbf{Y})$: Plots the columns of Y versus their index if Y is a real number.
Plot(\mathbf{x}, \mathbf{y}): Plots all lines defined by vector X versus vector Y pairs.
Stem(x,y):
A two-dimensional stem plot displays data as lines extending from a
baseline along the x -axis. A circle (the default) or other marker whose y -position represents the data value terminates each stem.

Subplot(m,n)

subplot divides the current figure into rectangular panes that are numbered row wise.

Subplot(m,n,p)

subplot($\mathrm{m}, \mathrm{n}, \mathrm{p}$) breaks the figure window into an m-by-n matrix

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I Semester
Experiment No: 5
of small axes. P is a number that specifies the position of the plane (subplot).

PROGRAM:

\% Generation of signals and sequences \%
clc;
\%generation of unit impulse signal\%
$\mathrm{t} 1=-1: 0.02: 1$
$\mathrm{y} 1=(\mathrm{t} 1==0)$;
Subplot (2,2,1);
Plot ($\mathrm{t} 1, \mathrm{y} \mathrm{l}$);
axis ([-1 $11-0.51 .5])$;
xlabel ('time');
ylabel ('amplitude');
title ('unit impulse signal');
\%generation of impulse sequence\%
subplot(2,2,2);
stem(t1,yl);
axis([-1 $11-0.51 .5])$;
xlabel('n');
ylabel('amplitude');
title('unit impulse sequence');
\%generation of unit step signal\%
t2=-5:0.1:5;
$\mathrm{y} 2=(\mathrm{t} 2>=0)$;
subplot(2,2,3);
plot(t2,y2);
$\operatorname{axis}\left(\left[\begin{array}{llll}-5 & -0.5 & 1.5\end{array}\right]\right.$;
xlabel('time');
ylabel('amplitude');
title('unit step signal');
\%generation of unit step sequence\%
subplot(2,2,4);

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I Semester
stem($\mathrm{t} 2, \mathrm{y} 2$);
axis([-5 5 -0.5 1.5]);
xlabel('n');
ylabel('amplitude');
title('unit step sequence');
\%generation of square wave signal\%
$\mathrm{t}=0: 0.2: 10$;
$\mathrm{y} 3=$ square (t);
figure;
subplot(2,2,1);
plot(t,y3);
axis([0 10 -2 2 2]);
xlabel('time');
ylabel('amplitude');
title('square wave signal');
\%generation of square wave sequence\%
subplot(2,2,2);
stem(t,y3);
axis([0 10-2 2]);
xlabel('n');
ylabel('amplitude');
title('square wave sequence');
\%generation of saw tooth signal\%
y4=sawtooth(t);
subplot(2,2,3);
plot(t,y4);
axis([0 10-2 2]);
xlabel('time');
ylabel('amplitude');
title('sawtooth wave signal');

Experiment No: 5

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I Semester
\%generation of sawtooth sequence \%
subplot(2,2,4);
stem(t,y4);
axis([0 10 -2 2 2]);
xlabel('n');
ylabel('amplitude');
title('sawtooth wave sequence');
\%generation of triangular wave signal\%
$\mathrm{y} 5=$ sawtooth $(\mathrm{t}, 0.5)$;
figure;
subplot(2,2,1);
plot(t,y5);
axis([0 10 -2 2 2]);
xlabel('time');
ylabel('amplitude');
title(' triangular wave signal');
\%generation of triangular wave sequence\%
subplot(2,2,2);
stem(t,y5);
axis([0 10 -2 2 2]);
xlabel('n');
ylabel('amplitude');
title('triangular wave sequence');
\%generation of sinsoidal wave signal\%
$\mathrm{y} 6=\sin (\mathrm{t})$;
subplot(2,2,3);
plot(t,y6);
axis([0 10 -2 2 2]);
xlabel('time');
ylabel('amplitude');
title(' sinsoidal wave signal');

Experiment No: 5

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I Semester
Experiment No: 5
$\%$ generation of sin wave sequence $\%$
subplot(2,2,4);
stem(t,y6);
axis([0 10 -2 2 2]);
xlabel('n');
ylabel('amplitude');
title('sin wave sequence');
\%generation of ramp signal\%
y7=t;
figure;
subplot(2,2,1);
plot(t,y7);
xlabel('time');
ylabel('amplitude');
title('ramp signal');
\%generation of ramp sequence\%
subplot(2,2,2);
stem(t,y7);
xlabel('n');
ylabel('amplitude');
title('ramp sequence');
\%generation of sinc signal\%
t3 $=$ linspace $(-5,5)$;
$\mathrm{y} 8=\operatorname{sinc}(\mathrm{t} 3)$;
subplot(2,2,3);
plot(t3,y8);
xlabel('time');
ylabel('amplitude');
title(' sinc signal');
\%generation of sinc sequence\%

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I Semester
subplot(2,2,4);
stem(y8);
xlabel('n');
ylabel('amplitude');
title('sinc sequence');
Output: (Expected waveforms)

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I Semester

Experiment No: 5

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I Semester

Experiment No: 5

(b) Basic Operations on Signals and sequences

Aim:

Perform the operations on signals and sequences such as addition, multiplication, scaling, shifting, folding and also compute energy and power.
Software Required: MATLAB software.

Theory:

Addition: Any two signals can be added to produce a third signal,

$$
z(t)=x(t)+y(t)
$$

Multiplication :

Multiplication of two signals can be obtained by multiplying their values at every instant.

$$
\mathrm{z}(\mathrm{t})=\mathrm{x}(\mathrm{t})^{*} \mathrm{y}(\mathrm{t})
$$

Time reversal/Folding:

Time reversal of a signal $\mathrm{x}(\mathrm{t})$ can be obtained by folding the signal about $\mathrm{t}=0$.

$$
z(t)=x(-t)
$$

if $x(t)$ is original signal then $z(t)$ is folded signal.

Signal Amplification/Scaling :

$$
\mathrm{Y}(\mathrm{n})=\mathrm{a} . \mathrm{x}(\mathrm{n}) \quad \text { if } \quad \mathrm{a}<1 ; \text { attenuation }
$$

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I Semester
Experiment No: 5
$\mathrm{a}>1$; amplification
Time shifting: The time shifting of $x(n)$ obtained by delay or advance the signal in time by using $y(n)=x(n+k)$
If k is a positive number, $\mathrm{y}(\mathrm{n})$ shifted to the right $\mathrm{i} e$ the shifting delays the signal.
If k is a negative number, $\mathrm{y}(\mathrm{n})$ it gets shifted left. Signal Shifting advances the signal.

Energy:

$E(n)=\sum_{-N}^{N}|x(n)|^{2}$

Average power

$P(n)=\frac{1}{N} \sum_{0}^{N}|x(n)|^{2}$

PROGRAM:

clc;
\% Generating two input signals\%
$\mathrm{t}=0: .01: 1$;
$\mathrm{x} 1=\sin \left(2 * \mathrm{pi}^{*} 4^{*} \mathrm{t}\right)$;
$\mathrm{x} 2=\sin \left(2 * \mathrm{pi}{ }^{*} 8^{*} \mathrm{t}\right)$;
subplot(2,2,1);
plot(t,x1);
xlabel('time');
ylabel('amplitude');
title('input signal 1');
subplot(2,2,2);
plot($\mathrm{t}, \mathrm{x} 2$);
xlabel('time');
ylabel('amplitude');
title('input signal 2');

> \% Addition of signals\%
$\mathrm{y} 1=\mathrm{x} 1+\mathrm{x} 2$;
subplot(2,2,3);
plot(t,y1);
xlabel('time');

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

```
II B.Tech I Semester
ylabel('amplitude');
title('addition of two signals');
    % Multiplication of signals%
y2=x1.*x2;
subplot(2,2,4);
plot(t,y2);
xlabel('time');
ylabel('amplitude');
title('multiplication of two signals');
% Scaling of a signal%
A=2;
y3=A*x1;
figure;
subplot(2,2,1);
plot(t,x 1);
xlabel('time');
ylabel('amplitude');
title('input signal')
subplot(2,2,2);
plot(t,y3);
xlabel('time');
ylabel('amplitude');
title('amplified input signal');
    % Folding of a signal%
h=length(x1);
nx=0:h-1;
subplot(2,2,3);
plot(nx,x1);
xlabel('nx');
ylabel('amplitude');
title('input signal')
```


G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

```
II B.Tech I Semester
y4=fliplr(x1);
nf=-fliplr(nx);
subplot(2,2,4);
plot(nf,y4);
xlabel('nf');
ylabel('amplitude');
title('folded signal');
%Shifting of a signal%
figure;
subplot(3,1,1);
plot(t,x1);
xlabel('time t');
ylabel('amplitude');
title('input signal');
subplot(3,1,2);
plot(t+2,x1);
xlabel('t+2');
ylabel('amplitude');
title('right shifted signal');
subplot(3,1,3);
plot(t-2,x1);
xlabel('t-2');
ylabel('amplitude');
title('left shifted signal');
%Operations on sequences%
n1=1:1:9;
sl=[12 lllllllll
figure;
subplot(2,2,1);
stem(n1,s1);
xlabel('n1');
ylabel('amplitude');
title('input sequence1');
```


G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I Semester
s2=[11124640536];
subplot(2,2,2);
stem(n1,s2);
xlabel('n2');
ylabel('amplitude');
title('input sequence2');
\% Addition of sequences
s3=s1+s2;
subplot(2,2,3);
stem(n1,s3);
xlabel('n1');
ylabel('amplitude');
title('sum of two sequences');
\% Multiplication of sequences
s4=s1.*s2;
subplot(2,2,4);
stem(n1,s4);
xlabel('n1');
ylabel('amplitude');
title('product of two sequences');
\% Program for energy of a sequence
$\mathrm{zl}=\left[\begin{array}{lllll}1 & 3 & 2 & 4 & 1\end{array}\right] ;$
el=sum(abs(z1).^2);
disp('energy of given sequence is');e1
\% Program for energy of a signal
$\mathrm{t}=0: 1: 10$
$\mathrm{z} 2=\cos \left(2 * \mathrm{pi}{ }^{*} 50 * \mathrm{t}\right) . \wedge 2 ;$
e2=sum(abs(z2).^2);
disp('energy of given signal is'); e2
\% program for power of a sequence
$\mathrm{p} 1=\left(\operatorname{sum}\left(\operatorname{abs}(\mathrm{z} 1) .{ }^{\wedge} 2\right)\right) /$ length $(z 1) ;$
disp('power of given sequence is');p1

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I Semester
Experiment No: 5
\% program for power of a signal $\mathrm{p} 2=(\operatorname{sum}(\operatorname{abs}(\mathrm{z} 2) . \wedge 2)) /$ length(z2); disp('power of given signal is');p2

Outputs:

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I Semester
Experiment No: 5

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I Semester
Experiment No: 5

Result:

Corresponding graphs have to be inserted.

G.N.I.T.S - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I SEMESTER

SIMULATION OF TRANSIENT RESPONSE OF RL, RC \& RLC CIRCUITS

AIM: To find the time response of current through series RL, RC \& RLC circuit for step input voltages.

SOFTWARE REQUIRED: MATLAB-SIMULINK.

THEORY:

Series RLC circuit:

Fig 1.a
The series RLC circuit is shown in fig1.a.. $\mathrm{v}(\mathrm{t})$ is the voltage source. The relation between the source voltage and current is given by equation

$$
R i(t)+L \frac{d i}{d t}+\frac{1}{C} \int i d t=v(t)
$$

This is a linear differential equation. Taking Laplace Transformer will get

$$
\begin{aligned}
&\left(R+L S+\frac{1}{C S}\right) \mathrm{I}(\mathrm{~S})=\mathrm{V}(\mathrm{~S}) \\
& \mathrm{I}(\mathrm{~s})=\mathrm{V}(\mathrm{~s}) /[\mathrm{R}+\mathrm{SL}+1 / \mathrm{SC}] \\
&=\mathrm{V}(\mathrm{~s}) * \mathrm{~S} / \mathrm{L} /\left\{\mathrm{S}^{2}+\mathrm{SR} / \mathrm{L}+1 / \mathrm{LC}\right\} \\
&=\mathrm{V}(\mathrm{~s}) * \mathrm{~S} / \mathrm{L} /\left[(\mathrm{S}-\propto 1)^{*}(\mathrm{~S}-\propto 2)\right] ; \\
& \alpha 1=-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}} \\
& \alpha 2=-\frac{R}{2 L}-\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}} \\
& \alpha 1=-\sigma+j \omega_{d} \\
& \alpha 2=-\sigma-j \omega_{d}
\end{aligned}
$$

G.N.I.T.S - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I SEMESTER
The condition for critical resistance R_{c} is

$$
\left(\frac{R}{2 L}\right)^{2}=\frac{1}{L C} \quad ; \quad R_{c}=2 \cdot \sqrt{\frac{L}{C}}
$$

If $\mathrm{R}<\mathrm{R}_{\mathrm{c}}$, Under Damped \& If $\mathrm{R}>\mathrm{R}_{\mathrm{c}}$, Over Damped
Current through the RLC circuit:
i) Overdamped case:

$$
I(t)=A_{1} e^{-\sigma 1 t}+A_{2} e^{-\sigma 2 t}
$$

ii) Critically damped case:

$$
I(t)=\left(A_{1}+A_{2} \cdot t\right) e^{-\sigma t}
$$

iii) Under damped case:

$$
I(t)=e^{-\sigma t}\left(A_{1} \cos \left(\omega_{d} \cdot t\right)+A_{2} \sin \left(\omega_{d} \cdot t\right)\right)
$$

Values of Parameters to be inserted in Circuit-Diagrams:

DC Input voltage: - $\mathrm{V}=1$,
$\mathrm{L}=50 \mu \mathrm{H}, \mathrm{C}=10 \mu \mathrm{~F} \& \mathrm{R}=1,4.472 \& 8$ ohms

Input Voltage \&Current Waveforms:

Fig 1.b

SAMPLE CALCULATIONS:

For $V=1, L=50 \mu H, C=10 \mu F \& R=1$ ohms
$\mathrm{R}_{\mathrm{c}}=2 * \operatorname{sqrt}(50 \mathrm{e}-6 / 10 \mathrm{e}-6)=4.472 \Omega, \mathrm{R}=1$,
$\sigma=\frac{R}{2 L}=1 /(2 * 50 \mathrm{e}-6)=1 \mathrm{e} 4$,

G.N.I.T.S - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I SEMESTER

$$
\omega d=\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}=\sqrt{(1 \mathrm{e} 4 * 1 \mathrm{e} 4-1 /(50 \mathrm{e}-6 * 10 \mathrm{e}-6))}=\mathrm{j} 43589 ;
$$

Series RL Circuit:

Consider a circuit consisting of a resistance and inductance as shown in figure 2.a.

Fig 2.a
The inductor in the circuit is initially uncharged and is in series with the resistor. when the switch is closed, the complete solution for the current is given below

$$
I=\frac{V}{R}\left(1-\exp \left(-\frac{R}{L} t\right)\right)
$$

Current response of RL circuit is shown in figure 2.b

Fig 2.b

The voltage across resistor and inductor are shown in figure 2.c

G.N.I.T.S - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I SEMESTER
Experiment no. 6

Fig 2.c

Step Response of RC circuit:

Consider a circuit consisting of resistance and capacitance as shown in below figure3.a

Fig 3.a

The capacitor in the circuit is initially uncharged, and is in series with a resistor. When the switch is closed at $\mathrm{t}=0$, the complete solution of the current is given by

$$
I=\frac{V}{R}\left(\left(e-\left(\frac{t}{R C}\right)\right)\right.
$$

G.N.I.T.S - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I SEMESTER
Current and voltage responses of RC circuit is shown in figure3.b

Fig 3.b

SIMULINK DIAGRAMS:

Figure4.1. Simulink diagram for step response of RLC circuit

G.N.I.T.S - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I SEMESTER
Experiment no. 6

Figure4.2. Simulink diagram for analysis of step response of RLC circuit for different damping cases

G.N.I.T.S - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS

II B.Tech I SEMESTER

Figure4.3. Simulink diagram for step response of RL circuit

Figure4.4. Simulink diagram for step response of RC circuit

RESULT:

Graphs need to be attached.

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS

II B.Tech-I Semester

MEASUREMENT OF 3-PHASE CIRCUIT USING 2 WATTMETER METHOD

Aim: To measure power of a 3-phase circuit using two-wattmeter method for three-phase star and delta connected balanced loads. Calculation of power factor for respectiveloads.

Apparatus:

S.NO.	Name of the Apparatus	Range and type	Quantity
1	Ammeter	0-10A (MI)	2
2	Voltmeter	0-600V(MI)	1
3	Wattmeter	$\begin{gathered} \hline 600 \mathrm{~V} / 10 \mathrm{~A}, \\ \mathrm{UPF} . \end{gathered}$	2
4	3ϕ Resistive load		1
5	3ϕ Inductive load		1
${ }^{\prime}$	LCR meter		1
7.	Digital multi meter		1
8.	Triple pole single throw switch(TPST)		1
9.	Connecting Wires		As required.

Theory:

This method is commonly used for the power measurement in the 3 phase circuits. Here as namesuggests, only two wattmeters are used. The current coils of the two wattmeters are connected inseries on any two lines. The corresponding pressure coils are connected between these lines and the third line on which no wattmeter is connected.

The two wattmeter method is used for the power measurement in the 3-phase systems, irrespective of whether the load is balanced or unbalanced, star or delta connected.

Total Power $=\mathrm{W}_{1}+\mathrm{W}_{2}$
As it is a balance condition, $\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{c}}=$ phase voltageThree Phase power $=3 \mathrm{~V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \cos \Phi$

As it is a balance condition, $\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{c}}=$
phase voltage $\mathrm{I}_{\mathrm{a}}=\mathrm{I}_{\mathrm{b}}=\mathrm{I}_{\mathrm{c}}=$ phase current

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS

II B.Tech-I Semester

Experiment No.-7
For resistive load $\cos \phi=1$.
So, Three phase power $=3 \mathrm{~V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}}$
$\mathrm{W}_{1}=\mathrm{V}_{\mathrm{AB}} \mathrm{I}_{\mathrm{A}} \cos (30-\Phi)=\sqrt{3} \mathrm{~V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \cos$
$(30-\Phi) \mathrm{W}_{2}=\mathrm{V}_{\mathrm{BC}} \mathrm{I}_{\mathrm{C}} \cos (30 \mp \Phi)=$
$\sqrt{3} \mathrm{~V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \cos (30+\Phi)$
$\mathrm{W}_{1}+\mathrm{W}_{2}=\sqrt{3} \mathrm{~V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}}\left[2 \cos 30^{\circ} \cos \Phi\right]=3 \mathrm{~V}_{\mathrm{ph}} \mathrm{I}_{\mathrm{ph}} \cos \Phi=\sqrt{3} \mathrm{~V}_{\mathrm{L}} \overline{\mathrm{I}}_{\mathrm{L}} \cos \Phi$
The above equation shows that the sum of the two wattmeter readings gives the total power consumed in the three-phase balanced system. Load power factor angle can be calculated from the measurement of W_{1} and W_{2}.

$$
\tan \Phi=\sqrt{3} \frac{\mathrm{~W}_{1}-\mathrm{W}_{2}}{\mathrm{~W}_{1}+\mathrm{W}_{2}}
$$

CIRCUIT DIAGRAM:

Figure 1: Circuit diagram for star connected balanced load.

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS
 II B.Tech-I Semester

Experiment No.-7

Figure 2: Circuit diagram for delta connected balanced load.
G.N.I.T.S. - EEE DEPARTMENT

ELECTRICAL CIRCUIT ANALYSIS
II B.Tech-I Semester
Experiment No.-7

Observations:

Star connected balanced load

S.No	\mathbf{V}_{1} (V)	$\mathbf{I}_{\mathbf{R}}$ (A)	$\mathbf{I}_{\mathbf{B}}$ (A)	\mathbf{P}_{1} (\mathbf{W})	$\mathbf{P}_{\mathbf{2}}$ (\mathbf{W})	$\mathbf{P}_{\mathbf{T}}=\mathbf{P}_{1}+\mathbf{P}_{\mathbf{2}}$ (\mathbf{W})

Delta connected balanced load

S.No	\mathbf{V}_{1} (\mathbf{V})	\mathbf{I}_{R} (\mathbf{A})	$\mathbf{I}_{\mathbf{B}}$ (\mathbf{A})	\mathbf{P}_{1} (\mathbf{W})	\mathbf{P}_{2} (\mathbf{W})	$\mathbf{P}_{\mathrm{T}}=\mathbf{P}_{1}+\mathbf{P}_{\mathbf{2}}$ (\mathbf{W})

Procedure:

1. Connect the circuit as shown in the circuit diagram for star connected load.
2. Switch ON the supply.
3. Note the readings of voltmeter, ammeter and wattmeter at no load condition and gradually increase the load.
4. Switch OFF the loads and then supply.
5. Connect the circuit as shown in the circuit diagram for delta connected load.
6. Switch ON the supply.
7. Note the readings of voltmeter, ammeter and wattmeter at no load condition and gradually increase the load.
8. Switch OFF the loads and then supply.

Result:

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

Time response of series RL and RC circuit
II B.Tech, I - Semester

Experiment No. 8(a) \&(b)

TIME RESPONSE OF R-L \& R-C SERIES CIRCUIT

AIM: -
To study the time response of current of R-L \& R-C network for D.C input voltage and find the time constant both theoretically and practically.

APPARATUS:-

1. Resistor -1 kilo ohm.
2. Capacitor -0.01 micro $\operatorname{farad}(\mu \mathrm{F})$.
3. Inductor -10 milli henery (mH).
4. Function Generator.
5. Cathode Ray Oscilloscope. (CRO)
6. CRO Probes.
7. Patch chords.

THEORY:-

Time response of R-L series circuit:
R-L series circuit is a circuit that contains a pure resistance of R ohms connected in series with a coil having pure inductance of L Henry is \mid known as R-L series circuit.

Applying KVL to a simple RL series circuit, with a current ' i ' amperes flowing through it. The following will be the set of equations,

The above RL series circuit is connected across a constant voltage source, (the battery) and a switch. Assume that the switch, S is open until it is closed at a time $\mathrm{t}=0$, and then remains permanently closed producing a "step response" type voltage input. The current, i begins to flow through the circuit but does not rise rapidly to its maximum value of Imax as determined by the ratio of V/R (Ohms Law).
This limiting factor is due to the presence of the self induced emf within the inductor as a result of the growth of magnetic flux, (Lenz's Law). After a time the voltage source neutralizes the effect of the self induced emf, the current flow becomes constant and the induced current and field are reduced to zero.

We can use Kirchhoff's Voltage Law, (KVL) to define the individual voltage drops that exist around the circuit and then hopefully use it to give us an expression for the flow of current.

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

Time response of series RL and RC circuit
II B.Tech,I - Semester
Experiment No. 8(a) \&(b)
Kirchhoff's voltage law (KVL) gives us:

$$
V_{(t)}-\left(V_{R}+V_{L}\right)=0
$$

The voltage drop across the resistor, R is I*R (Ohms Law).

$$
\mathrm{V}_{\mathrm{R}}=\mathrm{I} \times \mathrm{R}
$$

The voltage drop across the inductor, L is by now our familiar expression $\mathrm{L}(\mathrm{di} / \mathrm{dt})$

$$
\mathrm{V}_{\mathrm{L}}=\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}
$$

Then the final expression for the individual voltage drops around the LR series circuit can be given as:

$$
\begin{aligned}
& V_{(t)}=\mathbf{I} \times \mathbf{R}+\mathbf{L} \frac{\mathrm{di}}{\mathrm{dt}} \\
& V=I R+L \frac{d i}{d t} \\
& \frac{V}{R}=i+\frac{L}{R} \frac{d i}{d t} \\
& \frac{V}{R}-i=\frac{L}{R} \frac{d i}{d t} \\
& \frac{R}{L} d t=\frac{d i}{\frac{V}{R}-i} \\
& \text { Integrating both sides, } \\
& \int \frac{R}{L} d x=\int \frac{d i}{\frac{V}{R}-i} \\
& \rightarrow \frac{R}{R} t=-\ln \left[\frac{V}{R}-i\right]+K^{*} \\
& k^{*}=\text { integration constant. } \\
& \text { To find } k^{\prime} \text { : } \\
& \text { At } \mathbf{t}=\mathbf{O}, \mathbf{i}=\mathbf{I}_{\mathbf{O}}=\mathbf{O} \\
& \ln \left[\frac{V}{R}\right]=k^{\prime}
\end{aligned}
$$ from initial conditions.

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

Time response of series RL and RC circuit
II B.Tech,I - Semester
Experiment No. 8(a) \&(b)

$$
\begin{aligned}
& \frac{R t}{L}=-\ln \left[\frac{V}{R}-i\right]+\ln \left[\frac{V}{R}\right] \\
& \frac{R}{L} t=\ln \left[\frac{\frac{V}{R}}{\frac{V}{R}-i}\right]
\end{aligned}
$$

Take anti log
$e^{\frac{R}{R},}=\frac{\frac{V}{R}}{\frac{V}{R}-i}$
$\frac{V}{R}-i=\frac{V}{R} e^{\frac{-R}{L},}$
$i=\frac{V}{R}\left[1-e^{\frac{-R}{L} x}\right]$
Term V/R $=$ steady state current
$\frac{-V}{R} e^{-\frac{R}{L} t}=$
Transient part of solution of current.

(a) Induced voltage transient

(b) Resistor voltage transient

(c) Current transient

We can see that the voltage drop across the resistor depends upon the current, i, while the voltage drop across the inductor depends upon the rate of change of the current, $\mathrm{di} / \mathrm{dt}$. When the current is equal to zero, $(\mathrm{i}=0)$ at time $t=0$ the above expression, which is also a first order differential equation, can be rewritten to give the value of the current at any instant of time as:Expression for the Current in an LR Series Circuit

$$
I_{(t)}=\frac{V}{R}\left(1-e^{-R t / L}\right)(A)
$$

Where: V is in volts, R is in ohms, L is in henries, t is in seconds, e is the base of the Natural Logarithm $=2.71828$

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

Time response of series RL and RC circuit
II B.Tech,I - Semester
Experiment No. 8(a) \&(b)
The Time Constant, (τ) of the LR series circuit is given as L/R and in which V/R represents the final steady state current value after five time constant values. Once the current reaches this maximum steady state value at 5τ, the inductance of the coil has reduced to zero acting more like a short circuit and effectively removing it from the circuit.

Therefore the current flowing through the coil is limited only by the resistive element in Ohms of the coils windings. A graphical representation of the current growth representing the voltage/time characteristics of the circuit can be presented as.

Transient Characteristics Curves

Since the voltage drop across the resistor, V_{R} is equal to $\mathrm{I} * \mathrm{R}$ (Ohms Law), it will have the same exponential growth and shape as the current. However, the voltage drop across the inductor, V_{L} will have a value equal to: $\mathrm{Ve}^{(-\mathrm{Rt} / \mathrm{L})}$. Then the voltage across the inductor, V_{L} will have an initial value equal to the battery voltage at time $t=0$ or when the switch is first closed and then decays exponentially to zero as represented in the above curves.

The time required for the current flowing in the LR series circuit to reach its maximum steady state value is equivalent to about 5 time constants or 5τ. This time constant τ, is measured by $\tau=L / R$, in seconds, where R is the value of the resistor in ohms and L is the value of the inductor in henries. This then forms the basis of an RL charging circuit were 5τ can also be thought of as " $5 *(\mathrm{~L} / \mathrm{R})$ " or the transient time of the circuit.

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

Time response of series RL and RC circuit
II B.Tech,I - Semester
Experiment No. 8(a) \&(b)

Transient Response of RC Circuit:

Consider a Transient Response of RC Circuit consisting of resistance and capacitance as shown in figure below.

Series R C circuit
The capacitor in the circuit is initially uncharged, and is in series with a resistor. When the switch S is closed at $\mathrm{t}=0$, we can determine. the complete solution for the current. Application of the Kirchhoff's voltage law to the circuit results in the following differential equation.

$$
V=R i+\frac{1}{C} \int i d t
$$

By differentiating the above equation, we get

$$
\begin{aligned}
& 0=R \frac{d i}{d t}+\frac{i}{C} \\
& \frac{d i}{d t}+\frac{1}{R C} i=0
\end{aligned}
$$

Above equation is a linear differential equation with only the complementary function. The particular solution for the above equation is zero. The solution for this type of differential equation is

$$
i=c e^{-t / R C}
$$

Here, to find the value of c , we use the initial conditions.
In the Transient Response of RC Circuit shown in figure, switch S is closed at $t=0$; Since the capacitor never allows sudden changes in voltage, it will act as a short circuit at $\mathrm{t}=0^{+}$. So, the current in the circuit at $\mathrm{t}=0^{+}$is V / R
At $t=0$, the current $i=\frac{V}{R}$
Substituting this current in equation of current obtained after differentiation, we get

$$
\frac{V}{R}=c
$$

The current equation becomes

$$
i=\frac{V}{R} e^{-t / R C}
$$

When switch S is closed, the response decays with time as shown in Fig. 12.7.

G.N.I.T.S. - EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

Time response of series RL and RC circuit
II B.Tech,I - Semester
Experiment No. 8(a) \&(b)

Fig. 12.7
In the solution, the quantity RC is the time constant, and is denoted by τ, where $\tau=\mathrm{RC}$ sec
After 5 TC , the curve reaches 99 per cent of its final value. In the main RC circuit, we can find out the voltage across each element by using the current equation. Voltage across the resistor is

$$
v_{R}=R i=R \times \frac{V}{R} e^{-(1 / R C) t} ; v_{R}=V e^{-\frac{t}{R C}}
$$

Similarly, voltage across the capacitor is

$$
\begin{aligned}
v_{C} & =\frac{1}{C} \int i d t \\
& =\frac{1}{C} \int \frac{V}{R} e^{-t / R C} d t \\
& =-\left(\frac{V}{R C} \times R C e^{-t / R C}\right)+c=-V e^{-t / R C}+c
\end{aligned}
$$

At $\mathrm{t}=0$, voltage across capacitor is zero
$c=V$

$$
v_{C}=V\left(1-e^{-t / R C}\right)
$$

The responses are shown in figure below.

G.N.I.T.S. - EEE DEPARTMENT

ELECTRICAL CIRCUIT ANALYSIS LAB
Time response of series RL and RC circuit
II B.Tech,I - Semester
Experiment No. 8(a) \&(b)
Circuit diagrams:
Series RL circuit:

Tabular column:

S.No.	Input voltage (V)	Output voltage(V)	$\mathrm{I}=(\mathrm{V} / \mathrm{R}) \mathrm{mA}$	$\mathrm{t}(\mathrm{sec})$

G.N.I.T.S. - EEE DEPARTMENT

ELECTRICAL CIRCUIT ANALYSIS LAB
Time response of series RL and RC circuit
II B.Tech,I - Semester
Experiment No. 8(a) \&(b)

Series RC circuit:

Tabular column:

S.No.	Input voltage (V)	Output voltage(V)	$\mathrm{I}=(\mathrm{V} / \mathrm{R}) \mathrm{mA}$	$\mathrm{t}(\mathrm{sec})$

G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

Time response of series RL and RC circuit
II B.Tech,I - Semester
Expected graphs:
Response of RL series circuit.

$$
I=\text { voltage } / R \text { in } m A
$$

Response of RC series circuit.

```
I=voltage/R in mA
```


G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

Time response of series RL and RC circuit
II B.Tech,I - Semester

CALCULATIONS:

Theoretical calculation: (Has to be done before starting the experiment, for reference)
For R-L series circuit:
$\tau=\mathrm{L} / \mathrm{R}$.
For R-C series circuit:
$\tau=\mathrm{R}^{*} \mathrm{C}$.
Practical calculation: (Using an oscilloscope, ' τ ' is calculated by inspecting the response curve in channel -2 of the CRO.)

For R-L series circuit:
The place where $\mathrm{V}=63 \% \times \mathrm{V}_{0}$ (63% of the final value, as shown in figure- 3 for RL series circuit) has to be located and the corresponding time at which this occurs is noted. This time is the time constant, τ.

For R-C series circuit:
The place where $\mathrm{V}=37 \% \times \mathrm{V}_{0}$ (37% of the final value as shown in figure- 3 for RC series circuit) has to be located and the corresponding time at which this occurs is noted. This time is the time constant, τ.

PROCEDURE:-

1. Connections are made as per the circuit diagram as shown in the figure-1.
2. Function Generator and Channel-1 $(\mathrm{CH}-1)$ of the CRO are connected at the input terminals of the trainer circuit board.
3. Channel-2(CH-2) of the CRO is connected across the resistor.
4. A periodic square wave input of 5 V peak to peak is applied at a frequency of about 2 KHz .
5. From the wave form of current in CRO, the time-constant is measured as explained in the theory.
6. The applied voltage is varied to 8 V and 10 V and the procedure is repeated as explained in (4) \& (5), to observe the change in the value of time constant with change in the input voltage.
7. Connections are made as per the circuit diagram as shown in figure-2.
8. Steps (2) to (6) are repeated.

RESULT:-

Note: Graphs need to be inserted.

TWO PORT NETWORK PARAMETERS: Impedance(Z) and admittance(Y) parameters.

Aim: To determine Z and Y parameters for the given network and check the symmetry and reciprocity conditions experimentally and verify the same with theoretical values.

Apparatus:

S.NO.	Name of the Apparatus	Range	Quantity
1	Regulated power supply	$(0-30 \mathrm{~V})$	1
2	Bread board	-	1
3	Ammeter	$(0-200 \mathrm{~mA})$	2
4	Voltmeter	$(0-20 \mathrm{~V})$	2
5	Resistor	$2.2 \mathrm{k} \Omega$	2
6	Resistor	470Ω	3

Theory:

G.N.I.T.S- EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech I Semester
Experiment 9(a)
Z parameter is a factor by which input voltage and current \& output voltage and current of two port network is related with. For any two port network, input voltage V_{1} and output voltage V_{2} can be expressed in terms of input current I_{1} and output current I_{2} respectively. It is also known as open circuit impedance parameter. The unit of impedance parameter is ohm (Ω).
Z parameter in terms of input voltage V_{1} and output voltage V_{2} \& input current I_{1} and outpi current I_{2} is given as below.
$[\mathrm{V}]=[\mathrm{Z}][\mathrm{I}]$-(1)
Where $[Z]$ is impedance matrix,
[V] and [I] are voltage and current matrix.
Therefore, in matrix form the input and output voltage and current can be represented : below.

$$
\left[\begin{array}{l}
\mathrm{v} 1 \tag{2}\\
\mathrm{v} 2
\end{array}\right]=\left[\begin{array}{ll}
\mathrm{z} 11 & \mathrm{z} 12 \\
\mathrm{z} 21 & \mathrm{z} 22
\end{array}\right]\left[\begin{array}{l}
11 \\
12
\end{array}\right]
$$

Calculation of Z Parameter:
Let us consider a two port network shown in figure 1.
As per the definition.
$\mathrm{V}_{1}=\mathrm{Z}_{11} \mathrm{I}_{1}+\mathrm{Z}_{12} \mathrm{I}_{2}$
$\mathrm{V}_{2}=\mathrm{Z}_{21} \mathrm{I}_{1}+\mathrm{Z}_{22} \mathrm{I}_{2}$
Assuming the output of the two port network to be open, which means no current exits, therefore $\mathrm{I} 2=0$.

Now putting $I_{2}=0$ in (3), we get
$\mathrm{V}_{1}=\mathrm{Z}_{11} \mathrm{I}_{1}$
$Z_{11}=\left(V_{1} / I_{1}\right)$
Equation (5) can we re-written as
$Z_{11}=\left.\frac{V_{1}}{I_{1}}\right|_{\mathrm{I}_{2}=0}$
Similarly putting $\mathrm{I}_{2}=0$ in (4), we get
$\mathrm{V}_{2}=\mathrm{Z}_{21} \mathrm{I}_{1}$
$\mathrm{Z}_{21}=\left(\mathrm{V}_{2} / \mathrm{I}_{1}\right) \quad \cdots(6)$
$Z_{21}=\left.\frac{V_{2}}{I_{1}}\right|_{I_{2}=0}$

G.N.I.T.S- EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech I Semester
Again assuming input port of the two port network to be open, the input current $\mathrm{I}_{\mathrm{l}}=0$.
Now putting $\mathrm{I}_{1}=0$ in (3), we get
$\mathrm{V}_{1}=\mathrm{Z}_{12} \mathrm{I}_{2}$
$\mathrm{Z}_{12}=\left(\mathrm{V}_{1} / \mathrm{I}_{2}\right) \ldots-(7)$
$Z_{12}=\left.\frac{\mathrm{V}_{1}}{\mathrm{I}_{2}}\right|_{\mathrm{I}_{1}=0}$
Similarly putting $\mathrm{I}_{1}=0$ in (4), we get
$\mathrm{V}_{2}=\mathrm{Z}_{22 \mathrm{I}}^{2}$
$\mathrm{Z}_{22}=\left(\mathrm{V}_{2} / \mathrm{I}_{2}\right)$
$\mathrm{Z}_{22}=\left.\frac{\mathrm{V}_{2}}{\mathrm{I}_{2}}\right|_{\mathrm{I}_{1}=0}$
Condition for symmetry of Z- parameters is $Z_{11}=Z_{22}$ and for reciprocity is Z_{12} $=Z_{21}$.

Significance of different Z Parameters:

1. Z_{11} is the ratio of input voltage and input current when the output port is open; therefore it is known as input driving point impedance.
In electrical machines, this can be understood as a transformer at no load.
Where the input voltage is primary supply voltage V_{s} and the input current is excitation current, I_{e}. Thus, the input driving point impedance Z_{11} for this will be $\left(\mathrm{V}_{\mathrm{s}} / \mathrm{I}_{\mathrm{e}}\right)$.
2. Z_{22} is the ratio of output voltage and output current when input port is open; therefore it is called output driving point impedance of the network.
3. Z_{12} is the ratio of input voltage and output current when input port is open; therefore it is called reverse transfer impedance.
4. Z_{21} is the ratio of output voltage and input current when output port is open; therefore it is called forward transfer impedance.

G.N.I.T.S- EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech I Semester
Experiment 9(a)

Y-Parameters:

Y parameter of two port network is a 2×2 admittance matrix as shown is equation. Since admittance is the ratio of circuit current and voltage, therefore this admittance matrix gives the relationship between the input and output current and voltage of the network. It is also known as short circuit parameter or admittance parameter. The unit of admittance parameter is Siemens(S) or mho ($1 / \Omega$).

The Y parameter for a two port network is defined as
[I] = [Y] [V] .-.-(9)
where [Y] is the admittance matrix, [I] and [V] are the current and voltage matrix.

From the above matrix representation of two port network, it is clear that there are four admittance parameters i.e. Y_{11}, Y_{12}, Y_{21} and Y_{22}.

Calculation of Y Parameter:

Let us consider a two port network. Let $\mathrm{V}_{1}, \mathrm{I}_{1}, \mathrm{~V}_{2}$ and I_{2} are the input voltage, input current, output voltage and output current respectively.

The relationship between the input and output quantities for the network in figure 1, is obtained using equation (9) as shown below.
$\mathrm{I}_{1}=\mathrm{Y}_{11} \mathrm{~V}_{1}+\mathrm{Y}_{12} \mathrm{~V}_{2} \ldots \ldots$ (11)
$\mathrm{I}_{2}=\mathrm{Y}_{21} \mathrm{~V}_{1}+\mathrm{Y}_{22} \mathrm{~V}_{2} \ldots \ldots$ (12)
Assuming the output of the two port network to be short circuited, the output voltage will be zero, i.e., $V_{2}=0$.
Now, putting $\mathrm{V}_{2}=0$ in (11), we get,
$\mathrm{I}_{1}=\mathrm{Y}_{11} \mathrm{~V}_{1}$
$\mathrm{Y}_{11}=\left(\mathrm{I}_{1} / \mathrm{V}_{1}\right)$
$\mathrm{Y}_{11}=\left.\frac{\mathrm{I}_{1}}{\mathrm{~V}_{1}}\right|_{\mathrm{V}_{2}=0}$
Similarly putting $\mathrm{V}_{2}=0$ in (12), we get
$\mathrm{I}_{2}=\mathrm{Y}_{21} \mathrm{~V}_{1}$
$\mathrm{Y}_{21}=\left(\mathrm{I}_{2} / \mathrm{V}_{1}\right)$
$\mathrm{Y}_{21}=\left.\frac{\mathrm{I}_{2}}{\mathrm{~V}_{1}}\right|_{\mathrm{V}_{2}=0}$

G.N.I.T.S- EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech I Semester
Experiment 9(a)
Again, assuming input port of the two port network to be short circuited, the input voltage will be zero, $\mathrm{V} 1=0$.
Now putting $\mathrm{V}_{1}=0$ in (11), we get
$\mathrm{I}_{1}=\mathrm{Y}_{12} \mathrm{~V}_{2}$
$\mathrm{Y}_{12}=\left(\mathrm{I}_{1} / \mathrm{V}_{2}\right)$
$\mathrm{Y}_{12}=\left.\frac{\mathrm{I}_{1}}{\mathrm{~V}_{2}}\right|_{\mathrm{V}_{1}=0 \ldots(15)}$
Similarly putting $\mathrm{V}_{1}=0$ in (12), we get
$\mathrm{I}_{2}=\mathrm{Y}_{22} \mathrm{~V}_{2}$
$\mathrm{Y}_{22}=\left(\mathrm{I}_{2} / \mathrm{V}_{2}\right)$
$\mathrm{Y}_{22}=\left.\frac{\mathrm{I}_{2}}{\mathrm{~V}_{2}}\right|_{\mathrm{V}_{1}=0}$
Condition for symmetry of Y-parameters is $Y_{11}=Y_{22}$ and for reciprocity is $Y_{12}=$ Y_{21}.

Significance of different Y Parameters:

1. Y_{11} is the ratio of input current and voltage when the output port is short circuited, therefore it is known as input driving point admittance.
2. Y_{22} is the ratio of output current and voltage when input port is short circuited, therefore it is called output driving point admittance of the network.
3. Y_{12} is the ratio of input current and output voltage when input port is short circuited, therefore it is called reverse transfer admittance.
4. Y_{21} is the ratio of output current and input voltage when output port is short circuited, therefore it is called forward transfer admittance.

CIRCUIT DIAGRAM:

Figure 2: Main circuit for finding Z and Y parameters.

G.N.I.T.S- EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech I Semester
Experiment 9(a)
Z. parameters:
(i) Finding $Z_{11} \& Z_{21}$ parameters with port-2 Open circuited \& voltage V_{1} is applied at port-1.

Figure 3: Network to find Z_{11} \& Z_{21} parameters.
(ii)Finding Z_{12} \& Z_{22} parameters with port-1 open circuited \& voltage V_{2} is applied at port-2.

Figure 4: Network to find Z_{12} \& Z_{22} parameters.

G.N.I.T.S- EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech I Semester
Experiment 9(a)

X. parameters:

(i) Finding $X_{u 1}$ \& Y_{21} parameters with port-2 short circuited \& voltage V_{1} is applied at port-1.

Figure 5: Network to find Y_{11} \& Y_{21} parameters.
(ii) Finding X_{12} \& Y_{22} parameters with port-1 short circuited \& voltage V_{2} is applied at port-2.

Figure 6: Network to find Y_{12} \& Y_{22} parameters.

G.N.I.T.S- EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech I Semester
Experiment 9(a)

Observations and calculations:
Given R1=R2=R3=470 \mathbf{R}, R4=R5=2.2k .
Z Parameters:
(i)Finding $Z_{11} \& Z_{21}$ parameters with port-2 Open circuited \& voltage V_{1} is applied at port-1.

$V_{1}(V)$	$I_{1}(\mathrm{~mA})$	$V_{2}(V)$	$Z_{11}=\frac{V_{1}}{I_{1}} \Omega$	$Z_{21}=\frac{V_{2}}{I_{1}} \Omega$

(ii)Finding $Z_{12} \& Z_{22}$ parameters with port-1 open circuited \& voltage V_{2} is applied at port-2.

$V_{2}(V)$	$I_{2}(\mathrm{~mA})$	$V_{1}(V)$	$Z_{12}=\frac{V_{2}}{I_{2}} \Omega$	$Z_{22}=\frac{V_{z}}{I_{z}} \Omega$

Calculations for Z-parameters:

G.N.I.T.S- EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech I Semester

Y parameters:

(i) Finding $Y_{11} \& Y_{21}$ parameters with port-2 short circuited \& voltage V_{1} is applied at port-1.

$V_{1}(V)$	$I_{1}(\mathrm{~mA})$	$I_{2}(m A)$	$Y_{11}=\frac{I_{1}}{V_{1}} \cup$	$Y_{21}=\frac{I_{2}}{V_{1}} \cup$

(ii) Finding $Y_{12} \& Y_{22}$ parameters with port-1 short circuited \& voltage V_{2} is applied at port-2.

$V_{2}(V)$	$I_{2}(m A)$	$I_{1}(m A)$	$Y_{12}=\frac{I_{1}}{V_{2}} \cup$	$Y_{22}=\frac{I_{2}}{V_{2}} \cup$

Calculations for Y parameters:

G.N.I.T.S- EEE DEPARTMENT
 ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech I Semester
Experiment 9(a)

Procedure:

Z Parameters:

1. Connections are made as per the network shown in figure 3.
2. Readings of $V_{1}, I_{1} \& V_{2}$ are noted from the respective meters, with port-2 in open circuit condition,
3. The parameters $Z_{11} \& Z_{21}$ are calculated.
4. Connections are made as per the network shown in figure 4.
5. Readings of $V_{2}, I_{2} \& V_{1}$ are noted from the respective meters, with port- 1 in open circuit condition.
6. The parameters $Z_{22} \& Z_{12}$ are calculated.
7. The practical values of these parameters have to be compared with the theoretical calculations.

Y Parameters:

1. Connections are made as per the network shown in figure 5 .
2. Readings of $V_{1}, I_{1} \& I_{2}$ are noted from the respective meters, with port-2 in short circuit condition.
3. The parameters $Y_{11} \& Y_{21}$ are calculated.
4. Connections are made as per the network shown in figure 6.
5. Readings of $V_{2}, I_{2} \& I_{1}$ are noted from the respective meters, with port- 1 in short circuit condition.
6. The parameters Y_{12} \& Y_{22} are calculated.
7. The practical values of these parameters have to be compared with the theoretical calculations.

G.N.I.T.S- EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech I Semester
Experiment 9(a)
Result:

Comparison table:

 Conditions.	Theoretical values	Practical values.
$Z_{11} \Omega$		
$Z_{12} \Omega$		
$Z_{21} \Omega$		
$Z_{22} \Omega$		
$Y_{11} \quad$ v		
Y_{12} ひ		
Y_{21} v		
Y_{22} v		
Condition for Reciprocity		
Condition for Symmetry		

G.N.I.T.S- EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB

II B.Tech I Semester
Experiment 9(a)

TWO PORT NETWORK PARAMETERS (A,B,C,D \& h)
Aim: To determine transmission parameters-(A,B,C,D) and hybrid (h) parameters.

Apparatus:

S.NO.	Name of the Apparatus	Range	Quantity
1	Regulated power supply	$(0-30 \mathrm{~V})$	1
2	Bread board	-	1
3	Ammeter	$(0-200 \mathrm{~mA})$	2
4	Voltmeter	$(0-20 \mathrm{~V})$	2
5	Resistor	$2.2 \mathrm{k} \Omega$	2
6	Resistor	470Ω	3

Theory:

Basic two port network:

MAIN CIRCUIT DIAGRAM:

Figure l: Main network.

ABCD parameters (Transmission Parameters)

ABCD parameters are also known as "Transmission Parameters". In these parameters, the voltage and current at the sending end terminals can be expressed in terms of voltage and current at the receiving end. Thus,
$V_{1}=A V_{2}-B I_{2} \ldots \ldots . .(i)$
$I_{1}=C V_{2}-D I_{2} \ldots \ldots$ (ii)
Where $\left.A=\frac{V_{2}}{V_{2}} \right\rvert\, I_{2}=0 ; \mathrm{A}$ is called Reverse Voltage ratio.
$\left.B=\frac{-V_{1}}{L_{2}} \right\rvert\, V_{2}=0 ;$ "B" is called Transfer Impedance.
$\left.C=\frac{I_{1}}{V_{2}} \right\rvert\, I_{2}=0 ; " \mathrm{C} "$ is called Transfer Admittance.
$\left.D=\frac{-L_{1}}{I_{2}} \right\rvert\, V_{2}=0 ; " \mathrm{D}$ " is called Reverse Current ratio.
Hence,
Condition for symmetry Is A = D.
Condition for reciprocity is $\mathrm{AD}-\mathrm{BD}=1$.

Hybrid (OR) h- Parameters

In h-parameters of two port network, voltage of the input port and the current of the output port are expressed in terms of the current of the input port and the voltage of the output port. Due to this reason, these parameters are called as hybrid parameters.
Hybrid parameters are expressed as:
$V_{1}=h_{11} I_{1}+h_{12} V_{2} \ldots \ldots . .(i)$
(i)
$I_{2}=h_{21} I_{1}+h_{22} V_{2} \ldots \ldots \ldots(i i)$

Where,

$$
\begin{aligned}
& \left.h_{11}=\frac{V_{1}}{I_{1}} \right\rvert\, V_{2}=0, \\
& \left.h_{12}=\frac{V_{1}}{V_{2}} \right\rvert\, I_{1}=0, \\
& \left.h_{21}=\frac{I_{2}}{I_{2}} \right\rvert\, V_{2}=0, \\
& \left.h_{22}=\frac{I_{2}}{V_{2}} \right\rvert\, I_{1}=0 .
\end{aligned}
$$

$h_{11} \& h_{12}$ are Input Impedance and Output Admittance respectively.
$h_{21} \& h_{22}$ are Forward Current Gain and Reverse Voltage gains respectively.
Hence,
Condition for symmetry is $h_{11} h_{22}-h_{21} h_{12}=1$.
Condition for reciprocity is $\boldsymbol{h}_{12}=-\boldsymbol{h}_{21}$.

```
            G.N.I.T.S - EEE DEPARTMENT
            ELECTRICAL CIRCUIT ANALYSIS LAB

\section*{ABCD parameters (Transmission Parameters)}
(i) Finding A\&C parameters with port-2 Open circuited \& voltage \(V_{1}\) is applied at port1 as shown in figure2(a).

(ii)Finding B\&D parameters with port-2 Short circuited \& voltage \(V_{1}\) is applied at portlas shown in figure 2(b).


Figure 2(b): Network to determine \(B\) and D.

\section*{Hybrid( h) - Parameters:}
(i) When port-2 is Short circuited \& voltage \(V_{1}\) is applied at port-las shown in figure3(a).


Figure 3 (a): Network to determine \(h_{13}\) and \(h_{z s}\) -
(ii) When port-1 is Open circuited \& voltage \(V_{2}\) is applied at port-2, as shown in figure 3(b).


Figure 3 (b): Nefwork to determine \(h_{22}\) and, \(h_{12}\).

Observations and calculations:
Give \(R 1=R 2=R 3=470 \Omega\) and \(R 4=R 5=2.2 \mathrm{k} \Omega\).

\section*{ABCD Parameters:}
(i)Finding A\&C parameters with port-2 Open circuited \& voltage \(V_{1}\) is applied at port1,Figure 2(a).
\begin{tabular}{|l|l|l|l|l|}
\hline\(V_{1}(V)\) & \(I_{1}(\mathrm{~mA})\) & \(V_{2}(V)\) & \(A=\frac{V_{1}}{V_{2}}\) & \(c=\frac{I_{1}}{V_{2}}(m \mho)\) \\
\hline & & & & \\
\hline
\end{tabular}
(ii)Finding B\&D parameters with port-2 Short circuited \& voltage \(V_{1}\) is applied at port1,Figure 2(b).
\begin{tabular}{|l|l|l|l|l|}
\hline\(V_{1}(V)\) & \(I_{2}(m A)\) & \(I_{1}(m A)\) & \(B=\frac{-V_{1}}{I_{2}}(\mathrm{k} \Omega)\) & \(D=\frac{-I_{1}}{I_{2}}\) \\
\hline & & & & \\
\hline
\end{tabular}

\section*{Hybrid (h) parameters:}
(i) When port-2 is Short circuited \& voltage \(V_{1}\) is applied at port-1, figure 3(a).
\begin{tabular}{|l|l|c|c|c|}
\hline\(V_{1}(V)\) & \(I_{1}(\mathrm{~mA})\) & \(I_{2}(\mathrm{~mA})\) & \(h_{11}=\frac{V_{1}}{I_{1}}(\mathrm{k} \Omega)\) & \(h_{21}=\frac{I_{2}}{I_{1}}\) \\
\hline & & & & \\
\hline
\end{tabular}
(ii) When port-1 is 0 pen circuited \& voltage \(V_{2}\) is applied at port-2, figure \(3(\mathrm{~b})\).
\begin{tabular}{|l|l|l|l|l|}
\hline\(V_{1}(V)\) & \(I_{2}(\mathrm{~mA})\) & \(V_{2}(V)\) & \(h_{12}=\frac{V_{1}}{V_{2}}\) & \(h_{22}=\frac{-I_{2}}{V_{2}}(m \mathrm{U})\) \\
\hline & & & & \\
\hline
\end{tabular}
```

II B.Tech I- SEMESTER

```

\section*{Procedure:}

\section*{ABCD Parameters:}
1. Connections are made as per the network shown in figure 2(a).
2. Readings of \(V_{1}, I_{1}, V_{2}\) are noted from the respective meters, with port-2 in open circuit condition,
3. The parameters A \& C are calculated.
4. Connections are made as per the network shown in figure 2(b).
5. Readings of \(V_{1}, I_{1}, I_{2}\) are noted from the respective meters, with port-2 in short circuitcondition.
6. The parameters B \& D are calculated.
7. The practical values of these parameters have to be compared with the theoretical calculations.

\section*{Hybrid parameters:}
1. Connections are made as per the network shown in figure 3(a).
2. Readings of \(V_{1}, I_{2}, I_{1}\) are noted from the respective meters, with port-1 in open circuit condition.
3. The parameters \(h_{11}, h_{21}\) are calculated.
4. Connections are made as per the network shown in figure 3(b).
5. Readings of \(V_{1}, I_{2}, V_{2}\) are noted from the respective meters, with port-2 in shortcircuit condition.
6. The parameters \(h_{12}, h_{22}\) are calculated.
7. The practical values of these parameters have to be compared with the theoretical calculations.

\section*{Result:}

Comparison table:
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
Parameters \& \\
Conditions.
\end{tabular}} & Theoretical values & Practical values. \\
\hline A & & \\
\hline B & & \\
\hline C & & \\
\hline D & & \\
\hline\(h_{11}\) & & \\
\hline\(h_{12}\) & & \\
\hline\(h_{22}\) & & \\
\hline\(h_{21}\) & & \\
\hline Condition for Reciprocity & & \\
\hline Condition for Symmetry & & \\
\hline
\end{tabular}

\title{
G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB
}

II B.Tech I Semester

\section*{Waveform Synthesis Using Laplace Transform}

AIM: To obtain the Laplace transform for the a) Pulse wave form and b) the triangular pulse using waveform synthesis

Theory:
In waveform synthesis, the unit step function \(u(t)\) and other functions serve as building blocks in constructing other waveforms. Once the waveforms are synthesized in the form of other functions, Laplace transform is found and simplified.
a) To obtain the Laplace transform of the pulse using waveform synthesis

For example, we may describe a pulse waveform in terms of unit step functions. A pulse of unit amplitude from \(t=a\) to \(t=b\) can be formed by taking the difference between the two step functions.

\[
x(t)=u(t-a)-u(t-b)
\]

Hence \(X(s)=e^{-a s} \cdot \frac{1}{s}-e^{-b s} \cdot \frac{1}{s}\)

\title{
G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB
}

II B.Tech I Semester
b) To obtain the Laplace transform of the triangular Wave using waveform synthesis
(a)


(b)
(d)


As shown in the figure above, a ramp of slope A starting at \(t=0\) is taken as \(f 1(t)\). The
Function \(f 2(t)\) is the ramp of slope \(-2 A\) starting at \(t=1\). When we add \(f 1(t)\) and \(f 2(t)\) we get the signal shown in figure (c). Observe that a negative going ramp of slope ( \(A-2 A=-A\) ) starts at \(t=1\). To cancel the part of this ramp after \(t \geq 2\), a positive going ramp of slope + A in figure (d) is added. Then we get the required triangular pulse of Figure (e).

With the help of step functions, the ramp functions in the figure above can be expressed as follows:
i) \(\quad f_{1}(t)=\) A.t. \(u(t)\)
\{The function \(u(t)=1\) for \(t>0\); It indicates that ramp is present only for \(t \geq 0\) \}
ii) \(\quad f_{2}(t)=-2 A \cdot(t-1) \cdot u(t-1)\)
\{The function \(u(t-1)=1\) for \(t>1\); It indicates that ramp is present only for \(t \geq 1\}\)

\title{
G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB
}

II B.Tech I Semester
iii) \(\quad f_{3}(t)=A \cdot(t-2) \cdot u(t-2)\)

Therefore, \(f(t)=f_{1}(t)+f_{2}(t)+f_{3}(t)\)
\[
=A \cdot t \cdot u(t)-2 A \cdot(t-1) \cdot u(t-1)+A \cdot(t-2) \cdot u(t-2)
\]

Since \(u(t), u(t-1)\) and \(u(t-2)\) have values of , \(1^{\text {ce }}\) and they just represent the time shifts and directions of ramp functions, they can be dropped in this expression. Laplace transform of above equation becomes
\[
A \cdot \frac{1}{s^{2}}-2 \cdot A \cdot \frac{e^{-s}}{s^{2}}+A \cdot \frac{e^{-2 s}}{s^{2}}
\]

\section*{Procedure:}
1. Open MATLAB software.
2. For programming select NEW SCRIPT, to build up circuit model, select SIMULINK.
3. Programs mentioned in (i), (ii) and circuit models in figure (a) and (b) are rigged up and executed.

\section*{(i) PROGRAM FOR PULSE WAVE SYNTHISIS}
clc;
close all;
clear all;
\% WAVE FORM SYNTHISIS OF A PULSE WAVE FORM\%
syms fts;
\(\mathrm{a}=2\);
\(\mathrm{b}=5\);
\(\mathrm{fl}=\) heaviside(t-a) \(\%\) unit step function starts at 'a' sec
\(\mathrm{f} 2=-\) heaviside(t-b) \% unit step function starts at 'b' sec
\(\mathrm{f}=\mathrm{f} 1+\mathrm{f} 2\)
FS=laplace(f)

\section*{(ii) PROGRAM FOR TRIANGULAR WAVE SYNTHISIS}
clc;
close all;
clear all;
\% WAVE FORM SYNTHISIS OF A PULSE WAVE FORM\%

\title{
G.N.I.T.S. - EEE DEPARTMENT ELECTRICAL CIRCUIT ANALYSIS LAB
}

\section*{II B.Tech I Semester}
symsfts;
clc;
\(\mathrm{A}=1\);
\(\mathrm{fl}=\mathrm{A}{ }^{*} \mathrm{t}^{*}\) heaviside( t ) \% Ramp function starts at \({ }^{\prime} \mathrm{t}=0\) '
\(\mathrm{f} 2=-2 * \mathrm{~A} *(\mathrm{t}-1) *\) heaviside( \(\mathrm{t}-1\) ) \% ramp function at ' \(\mathrm{t}=2\) ' sec
\(\mathrm{f} 3=\mathrm{A} *(\mathrm{t}-2) *\) heaviside \((\mathrm{t}-2)\)
\(\mathrm{f}=\mathrm{f} 1+\mathrm{f} 2+\mathrm{f} 3\)
FS=laplace(f)

Figure (a) Simulink diagram for Pulse waveform

. Figure (b) Simulink diagram for Triangular waveform
 ELECTRICAL CIRCUIT ANALYSIS LAB

\section*{II B.Tech I Semester}

Experiment No: 10

\section*{Result:}```

