
1

G. NARAYANAMMA INSTITUTE OF TECHNOLOGY AND SCIENCE

[AUTONOMOUS]

Accredited by NBA & NAAC, Affiliated to

JNTUH, Shaikpet, Hyderabad-104

YEAR: I I I -B.Tech I & II-SEM A.Y: 2023-2024

MICROPROCESSORS & MICROCONTROLLERS LAB MANUAL

Name of Student: …………………………………………………………………………

Roll NO :……………………………………………………………………………………………

Branch: …………………………….. Section: ………………………………………..

Year: …………………………………… Semester……………………………………..

Department of Electrical & Electronics Engineering

NBA & NAAC Accredited

Recognized Research Centre by JNTUH

2

PREFACE

Electrical engineering is a fundamental discipline that underpins many aspects of our

technologically advanced world. It encompasses the study and application of electrical

principles, circuits, and devices, which are essential in various industries and everyday

life. The Basic Electrical Engineering Laboratory provides students with a hands-on

opportunity to explore and experiment with the fundamental concepts and components

that form the foundation of electrical engineering.

This laboratory course is designed to introduce students to the

fundamental principles of electrical engineering and to equip them with practical skills

that will be invaluable throughout their academic and professional journeys. By

conducting experiments, analyzing data, and troubleshooting circuits, students will gain

a deeper understanding of basic electrical concepts and build a strong foundation for

more advanced coursework in the field.

By actively engaging in these laboratory exercises and following the outlined

procedures, you will not only strengthen your understanding of basic electrical

engineering but also develop the skills and knowledge necessary to excel in more

advanced electrical engineering courses and real-world applications. Electrical

engineering is a field with boundless opportunities, and this laboratory experience is

the first step in your exciting journey.

HOD-EEE

3

Course Objectives:

1. To infer the basics of the microprocessor and its assembly language.

2. To extend the basics of assembly language to the microcontroller.

3. To provide foundation on interfacing the external devices to the micro controller.

4. To develop solutions for the real time applications.

Course Outcomes:

At the end of this course, students will be able to:

1. Illustrate the assembly language programming.

2. Design circuits for various applications using microcontroller.

3. Apply the concepts of microcontroller on real- time applications.

4. Evaluate the results of 8086 and 8051 programs.

5. Use standard test and measurement equipment to evaluate analog/digital

interfaces.

6. Analyze abstract problems and apply a combination of hardware and software to

address the problem.

CO-PO Mapping Matrix:

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2

CO 1 2

CO 2 2 3

CO 3 3 1

2

CO 4 2

CO 5 1 2

CO 2

4

Program Outcomes:

PO1 Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals and an engineering specialization to the solution of complex engineering

problems.

PO2 Problem analysis: Identify, formulate, review research literature and analyze

complex engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences and engineering sciences.

PO3 Design/development of solutions: Design solutions for complex engineering problems

and design system components or processes that meet the specified needs with

appropriate consideration for the public health and safety and the cultural, societal, and

environmental considerations.

PO4 Conduct investigations of complex problems: Use research – based knowledge and

research methods including design of experiments, analysis and interpretation of data and

synthesis of the information to provide valid conclusions.

PO5 Modern tool usage: Create, select and apply appropriate techniques, resources and

modern engineering and IT tools including prediction and modeling to complex engineering

activities with an understanding of the limitations.

PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to

asses societal, health, safety, legal and cultural issues and the consequent responsibilities

relevant to the professional engineering practice.

PO7 Environment and sustainability: Understand the impact of the professional

engineering solutions in societal and environmental contexts and demonstrate the

knowledge of, and need for sustainable development.

PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities

and norms of the engineering practice.

PO9 Individual and teamwork: Function effectively as an individual and as a member or

leader in diverse teams and in multidisciplinary settings.

PO10 Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and

5

write effective reports and design documentation, make effective presentations and give

and receive clear instructions.

PO11 Project management and finance: Demonstrate knowledge and understanding of

the engineering and management principles and apply these to one’s own work, as a member

and leader in a team ,to manage projects and in multidisciplinary environments.

PO12 Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of technological

change.

6

Safety Instructions to Students

Do's: Don'ts:

Follow Lab Guidelines:

Adhere to the lab guidelines and

instructions provided by the instructor.

Check Equipment:

Before starting any experiment, check the

condition of equipment and ensure that it

is functioning properly.

Document Procedures:

Document the procedures and results

systematically in a lab notebook.

Backup Work:

Regularly backup your work and code to

prevent data loss.

Ask Questions:

Don't hesitate to ask questions if you're

unsure about any aspect of the experiment

or equipment usage.

Collaborate Responsibly:

Collaborate with lab partners, but ensure

that each student understands and

contributes to the work.

Keep the Workspace Tidy:

Keep the work area clean and organized.

Report Issues:

Report any malfunctioning equipment or

safety concerns to the instructor.

Save Data:

Save important data and code regularly

during experiments.

Respect Lab Time:

Make the most of the lab time allocated

for experiments. Be focused and

productive.

Follow Ethical Guidelines:

Adhere to ethical guidelines and academic

honesty.

Don't Rush:

Avoid rushing through experiments.

Take the time to understand each step.

No Food or Drinks:

Do not bring food or drinks into the lab

to prevent contamination and damage to

equipment.

No Unauthorized Modifications:

Do not modify or tamper with equipment

without permission.

Avoid Distractions:

Minimize distractions, such as

unnecessary conversations or use of

personal electronic devices.

Don't Skip Safety Procedures:

Follow safety procedures, and do not

neglect the use of safety equipment.

Don't Panic:

If there's an issue, don't panic. Inform

the instructor and seek assistance.

No Unauthorized Access:

Do not access areas or equipment that

you are not authorized to use.

Don't Leave Equipment Unattended:

Do not leave equipment unattended,

especially when it is powered on.

Avoid Overloading Circuits:

Do not overload circuits or violate

specified operating conditions.

7

LIST OF EXPERIMENTS

 Programming using 8086:

1. Arithmetic operations (Addition, Subtraction, Multiplication and Division).

2. Sorting of an Array.

3. Searching for characters in a string.

4. Program for string manipulations for 8086.

 Programming using 8051:

5. Arithmetic operations (Addition, Subtraction, Multiplication and Division).

6. Write a program to interface LEDs to 8051.

7. Programming Timer/Counter using 8051.

8. Program to interface a Keyboard using 8051.

9. Write a program to verify Interrupt handling in 8051.

10. Program to implement UART operation to 8051.

 Additional Experiments:

11. Interfacing LCD to 8051.

12. Write a program to interface stepper/DC motor with 8051.

GNITS- EEE DEPARTMENT
MICROPROCESSORS & MICROCONTROLLERS LAB

III B.Tech, II Semester

 S.N
o

Date Name of the Experiment Page
No

Grade Signature

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

Additional

Experiment

8

9

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 7

1. a -8 BIT ADDITION

Aim: To perform 8 bit addition of two hexadecimal numbers using input memory offset

address 20f0h and the result stored at output memory offset address 20f2h.

Apparatus: TASM, PC

Algorithm:

1. Start

2. Initialize the address of code segment register to data segment register to use tiny

memory model.

3. Load first number to lower byte of accumulator register from given memory location.

4. Load the second number to lower byte of base register from given memory location.

5. Perform addition on first and second operands and store the result in destination

operand.

6. Store the accumulator content to given memory location.

7. Set break point.

8. Exit from DOS prompt.

9. Stop

Program:

.model tiny

.stack 32h

.code

org 2000h

start: mov ax,cs

 mov ds,ax

 mov ax,00h

 mov al,num1

 mov bl,num2

 add al,bl

 mov result,al

 int 3h

 mov ah,4ch

 int 21h

org 20f0h

 num1 db 03h

 num2 db 08h

 result db 00

end start

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 8

Result:

Without carry:

Input Data output data

num1(20f0h) 03h Result(20f2h) 0Bh

num2(20f1h) 08h carry 0

With carry:

Input Data output data

num1(20f0h) 0aah Result(20f2h) 0a9h

num2(20f1h) 0ffh carry 1

8 bit addition of two hexadecimal numbers has been performed.

Exercise:

1. What is the significance of model tiny?

2. How many model assignments are the name them?

3. What is a directive?

4. What is a pseudo operation?

5. ORG 2000H implies what?

6. At register is used why not AX?

7. What is the purpose of INT3 in the program?

8. What is the purpose of MOV AH, 4CH/ INT 21H in the program?

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 9

1.b - 16 BIT ADDITION

Aim:To perform 16-bit addition of two hexadecimal numbers without and with carry using

input memory offset address is 20f0h and the result is stored at output memory offset address

is 20f4h.

Apparatus: TASM, PC

Algorithm:

1. Start

2. Initialize the address of code segment register to data segment register to use tiny

memory model.

3. Load the first number to accumulator register from given memory location.

4. Load the second number to base register from given memory location.

5. Perform addition on first and second operands and store the result in destination

operand.

6. Store the accumulator content to given memory location.

7. Set break point.

8. Exit from DOS prompt.

9. Stop

Program:

.model tiny

.stack 32h

.code

org 2000h

start: mov ax,cs

 mov ds,ax

 mov ax,00

 mov ax,num1

 mov bx,num2

 add ax,bx

 mov result,ax

 int 3

 mov ah,4ch

 int 21h

org 20f0h

 num1 dw 04526h

 num2 dw 01352h

 result dw 00

end start

Result:

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 10

Without carry:

Input Data output data

num1(20f0h) 04526h Result(20f4h) 05878h

num2(20f2h) 01352h carry 0

With carry:

Input Data output data

num1(20f0h) 0bafeh Result(20f4h) 97ech

num2(20f2h) 0dceeh carry 1

16 bit addition of two hexadecimal numbers has been performed.

Exercise:

1. What is significance of Stack 32h?

2. Can ORG have other numbers instead of 2000h?

3. What is the purpose of MOV AX, CS? MOV DS, AX?

4. Why AX register is used and not AL?

5. What is the purpose of DW?

6. What happens if the result is greater than 16bit when result is declared an DW?

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 11

1.c - 8 BIT SUBTRACTION

Aim:To perform 8 bit subtraction of two hexadecimal numbers without and with borrow using

input memory offset address 20f0h and the result stored at output memory offset address 20f2h.

Apparatus: TASM, PC

Algorithm:

1. Start

2. Initialize the address of code segment register to data segment register to use tiny

memory model.

3. Load first the number to lower byte of accumulator register from given memory

location.

4. Load the second number to lower byte of base register from given memory location.

5. Perform subtraction on first and second operands and store the result in destination

operand.

6. Store the accumulator content to given memory location.

7. Set break point.

8. Exit from DOS prompt.

9. Stop

Program:

.model tiny

.stack 32h

.code

org 2000h

start: mov ax,cs

 mov ds,ax

 mov ax,00

 mov al,num1

 mov bl,num2

 sub al,bl

 mov result,al

 int 3

 mov ah,4ch

 int 21h

org 20f0h

 num1 db 0ffh

 num2 db 0aah

 result db 00

end start

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 12

Result:

Without borrow:

Input Data output data

num1(20f0h) 0ffh Result(20f2h) 055h

num2(20f1h) 0aah carry 0

With borrow:

Input Data output data

num1(20f0h) 0aah Result(20f2h) 0abh

num2(20f1h) 0ffh carry 1

8 bit subtraction of two hexadecimal numbers has been performed.

Exercise:

1. What AL has been used and not AX?

2. What happens if num1 contains 0AAH and num2 contains 0FFH?

3. How do you account for the difference obtained in previous question?

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 13

1.d - 16 BIT SUBTRACTION

Aim:To perform 16 bit subtraction of two hexadecimal numbers without and with borrow

using input memory offset address 20f0h and the result stored at output memory offset address

20f4h.

Apparatus: TASM, PC

Algorithm:

1. Start

2. Initialize the address of code segment register to data segment register to use tiny

memory model.

3. Load the first number to accumulator register from given memory location.

4. Load the second number to base register from given memory location.

5. Perform subtraction on first and second operands and store the result in destination

operand.

6. Store the accumulator content to given memory location.

7. Set break point.

8. Exit from DOS prompt.

9. Stop

Program:

. model tiny

. stack 32h

. code

org 2000h

start: mov ax,cs

 mov ds,ax

 mov ax,00h

 mov ax,num1

 mov bx,num2

 sub ax,bx

 mov result,ax

 int 3h

 mov ah,4ch

 int 21h

org 20f0h

 num1 dw 0ffffh

 num2 dw 0eabch

 result dw 00

end start

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 14

Result:

Without borrow:

Input Data output data

num1(20f0h) 0ffffh Result(20f4h) 1543h

num2(20f2h) 0eabch carry 0

With borrow:

Input Data output data

num1(20f0h) 0eabch Result(20f4h) 0eabdh

num2(20f2h) 0ffffh carry 1

16 bit subtraction of two hexadecimal numbers has been performed.

Exercise:

1. Why should AX be used not AL?

2. What happens if num1 and num2 values are interchanged?

3. If carry is set to 1 before subtraction what is the instruction to be used?

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 15

1.e – 8 BIT MULTIPLICATION

Aim:To perform 8 bit multiplication of two hexadecimal numbers using input memory offset

address is 20f0h and the result is stored at output memory offset address is 20f2h.

Apparatus: TASM, PC

Algorithm:

1. Start

2. Initialize the address of code segment register to data segment register to use tiny

memory model.

3. Load the first number to lower byte of accumulator register from given memory

location.

4. Load the second number to lower byte of base register from given memory location.

5. Multiply first and second operands and store the result in destination operand.

6. Store the accumulator content to given memory location.

7. Set break point.

8. Exit from DOS prompt.

9. Stop

Program:

. model tiny

. stack 32h

. code

org 2000h

start: mov ax,cs

 mov ds,ax

 mov ax,00

 mov al,num1

 mov bl,num2

 mul bl

 mov result,al

 mov result1,ah

 int 3

 mov ah,4ch

 int 21h

org 20f0h

 num1 db 0ffh

 num2 db 0aah

 result db 00

 result1 db 00

end start

Result:

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 16

Input Data output data

num1(20f0h) 0ffh Result(20f2h) 56h

num2(20f1h) 0aah Result1(20f3h) 0a9h

8 bit multiplication of two hexadecimal numbers has been performed.

Exercise:

1. What is an extended accumulator?

2. AL and BL are used for multiplying why not AX & BX?

3. Instead of using MOV BL is it not possible to MUL num2?

4. What is the instruction used for signed multiplication?

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 17

1.f -16 BIT MULTIPLICATION

Aim: To perform 16 bit multiplication of two hexadecimal numbers using input memory

offset address is 20f0h and the result is stored at output memory offset address is 20f4h.

Apparatus: TASM, PC

Algorithm:

1. Start

2. Initialize the address of code segment register to data segment register to use tiny

memory model.

3. Load the first number to accumulator register from given memory location.

4. Load the second number to base register from given memory location.

5. Multiply first and second operands and store the result in destination operand.

6. Store the accumulator content to given memory location.

7. Store the data register content to the given memory location.

8. Set break point.

9. Exit from DOS prompt.

10. Stop

Program:

. model tiny

. stack 32h

. code

org 2000h

start: mov ax,cs

 mov ds,ax

 mov ax,00

mov dx, 00

 mov ax,num1

 mov bx,num2

 mul bx

 mov result,ax

 mov result1,dx

 int 3

 mov ah,4ch

 int 21h

org 20f0h

 num1 dw 0ffffh

 num2 dw 0aaaah

 result dw 00

 result1 dw 00

end start

Result:

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 18

Input Data output data

num1(20f0h) 0ffffh Result(20f4h) 5556h

num2(20f2h) 0aaaah Result1(20f6h) 0aaa9h

16 bit multiplication of two hexadecimal numbers has been performed.

Exercise:

1. Why AL & BL are not used in this?

2. If result exceeds 32 bit where is it stored?

3. What is the name given to the register combination DXAX?

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 19

1.g – 8 BIT DIVISION

Aim:To perform 8 bit division of two hexadecimal numbers using input memory offset

address is 20f0h and the result is stored at output memory offset address is 20f2h.

Apparatus: TASM, PC

Algorithm:

1. Start

2. Initialize the address of code segment register to data segment register to use tiny

memory model.

3. Load the first number to lower byte of accumulator register from given memory

location.

4. Load the second number to lower byte of base register from given memory location.

5. Divide first and second operands and store the result in destination operand.

6. Store the accumulator content to given memory location.

7. Set break point.

8. Exit from DOS prompt.

9. Stop

Program:

. model tiny

. stack 32h

. code

org 2000h

start: mov ax,cs

 mov ds,ax

 mov ax,00

 mov dx,00

 mov al,num1

 mov bl,num2

 div bl

 mov Quotient,al

 mov remainder,ah

 int 3

 mov ah,4ch

 int 21h

org 20f0h

 num1 db 0ffh

 num2 db 0aah

 Quotient db 00

 remainder db 00

end start

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 20

Result:

Input Data Output Data

num1(20f0h) 0ffh Quotient (20f2h) 01h

num2(20f1h) 0aah remainder (20f3h) 55h

8 bit division of two hexadecimal numbers has been performed.

Exercise:

1. Why is the registers DX & AX made zero in the above program?

2. The above program?

3. Where is the remainder in 8 bit division?

4. Where is the quotient in 8 bit division?

5. If AH contains a non-zero value, what will be the result of the division?

6. Which interrupt is used when a divide overflow error occurs?

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 21

1.h - 16 BIT DIVISION

Aim:To perform 16 bit division of two hexadecimal numbers using input memory offset

address is 20f0h and the result is stored at output memory offset address is 20f4h.

Apparatus: TASM, PC

Algorithm:

1. Start

2. Initialize the address of code segment register to data segment register to use tiny

memory model.

3. Load the first number to accumulator register from given memory location.

4. Load the second number to base register from given memory location.

5. Divide first and second operands and store the result in destination operand.

6. Store the accumulator content to given memory location.

7. Store the data register content to given memory location.

8. Set break point.

9. Exit from DOS prompt.

10. Stop

Program:

.model tiny

.stack 32h

.code

org 2000h

start: mov ax,cs

 mov ds,ax

 mov ax,00

 mov dx,00

 mov ax,num1

 mov bx,num2

 div bx

 mov Quotient,ax

 mov remainder,dx

 int 3

 mov ah,4ch

 int 21h

org 20f0h

 num1 dw 0ffffh

 num2 dw 0aaaah

 Quotient dw 00

 remainder dw 00

end start

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 22

Result:

Input Data output data

num1(20f0h) 0ffffh Quotient (20f4h) 0001h

num2(20f2h) 0aaaah remainder (20f6h) 5555h

16 bit division of two hexadecimal numbers has been performed.

Exercise:

1. What happens if DX register contains a nonzero value before DIV instruction?

2. What is the instruction used for signed division?

3. In the above program instead of DIV BX is it possible to use DIV num2?

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 23

2.a -SORTING 'N' NUMBERS IN ASCENDING ORDER

Aim: To sort N numbers in a given array as ascending order using input memory offset address

is 300h and result is stored at output memory offset address is 300h.

Apparatus: TASM, PC

Algorithm:

Step I: Initialize the data segment memory.

Step II : Initialize the number of elements counter

Step III : Initialize the comparisons counter..

Step IV: Load the numbers into respective registers.

 Step V: Compare the elements. If first element < second element goto step VII Else go to

next step.

Step VI: Swap the numbers in the memory.

Step VII: Increment memory pointer & Decrement the comparison counter.

Step VIII: Is count = 0 ? if yes go to next step else go to step IV.

 Step IX: decrement the element counter.

Step X: Is count not 0 ? go Step III else go to next step Step IX: Stop & terminate the

program

Program:

. model tiny

. stack 32h

Data segment

org 300h

array db 05h,03h,01h,04h,02h

count db 05h

Data ends

Code segment

 assume cs: code,ds: data

org 2000h

Start: mov ax,data

 mov ds,ax

 sub ax,ax

 mov dl,count

 mov di,dx

 dec di

back1:dec dx

 mov cx,dx

 mov si,offset array

back: mov al,[si]

 cmp al,[si+1]

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 24

 jbe forw

 xchg al,[si+1]

 mov [si],al

forw:inc si

 loop back

 dec di

 jnz back1

 int 3h

mov ah,4ch

 int 21h

Code ends

End start

Result:

Input Data Output Data

array(300h) 05h, 03h, 01h, 04h, 02h 300h 01h, 02h, 03h, 04h, 05h

The sorting of N numbers in a given array has been performed

Exercise:

1. What is the purpose served by the following register?

a) di

b) si

c) cx

2. jbe is equivalent to what other conditional jump instruction?

3. What is the difference between XCHG & CMP?

4. What is the purpose served by the instruction SUB AX, AX?

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 25

2.b - SORTING 'N' NUMBERS IN DESCENDING ORDER

Aim:To sort Nnumbers in a given array as descending order using input memory offset

address is 300h and result is stored at output memory offset address is 300h.

Apparatus: TASM, PC

Algorithm:

Step I: Initialize the data segment memory.

Step II : Initialize the number of elements counter

Step III : Initialize the comparisons counter..

Step IV: Load the numbers into respective registers.

 Step V: Compare the elements. If first element >second element goto step VII Else go to

next step.

Step VI: Swap the numbers in the memory.

Step VII: Increment memory pointer & decrement the comparison counter.

Step VIII: Is count = 0 ? if yes go to next step else go to step IV.

 Step IX: decrement the element counter.

Step X: Is count not 0 ? go Step III else go to next step Step IX: Stop & terminate the

program

Program:

.model tiny

.stack 32h

Data1 segment

org 300H

array db 05h,03h,01h,04h,02h

count db 05h

Data1 ends

Code1 segment

assume cs:code1,ds:data1

org 2000h

Start: mov ax,data1

 mov ds,ax

 sub ax,ax

 mov dl,count

 mov di,dx

 dec di

back1: dec dx

 mov cx,dx

 mov si,offset array

back: mov al,[si]

 cmp al,[si+1]

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 26

 jae forw

 xchg al,[si+1]

 mov [si],al

forw: inc si

 loop back

 dec di

 jnz back1

 int 3h

 mov ah,4ch

 int 21h

Code1 ends

End start

Result:

Input Data Output Data

array(300h) 05h,03h,01h,04h,02h 300h 05h,04h,03h,02h,01h

The sorting of N numbers in a given array has been performed

Exercise:

1. What are the flags which are checked when JG is executed and their conditions?

2. If array of 16 numbers is to be sorted, then what will be change in the following

instructions?

CMP AL, [SI+1]

XCHG AL, [SI+1]

INC SI

 3. Write comment on LOOP instruction?

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 27

3.SEARCHING A CHARACTER

Aim: To find the searching of a character in a given string and corresponding resultant

message is displayed at command window.

Apparatus:TASM, PC

Algorithm:

1. Start

2. Data Segment Initialization

3. Extra Segment Initialization

4. Copy offset address of string1 to DI Register

5. Store Character to be search in AL Register

6. Initialize DF =0

7. Load the count of string1 in CL register.

8. Scan the string1 with respect to AL content.

9. If match found print character found message and if match not found in the scanning

process till end character of string, then print character not found message on

command window.

10. Stop

Program:

.model tiny

data segment

notfound db 'Character not found in string$'

found db 'Wow!!! Character found in string$'

data ends

extra segment

string1 db 'Fools can ask question which clever cannot answer',24H

strlen equ ($-string1)

extra ends

code segment

 assume cs:code,ds:data,es:extra

start: mov ax,data

 mov ds,ax

 mov ax,extra

 mov es,ax

 mov di,offset string1

 mov al,'q'

 cld

 mov cx,strlen

 repne scasb

 jz foundchar

 mov ah,09h

 mov dx,offset notfound

 int 21h

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 28

 jmp exitp

foundchar: mov ah,09h

 mov dx,offset found

 int 21h

exitp: int 3h

mov ah,4ch

 int 21h

code ends

end start

Result:

The searching of a character in a given string has been performed.

Exercise:

1. How is the search character given to the program ?

2. What registers are used by the instruction SCASB ?

3. What does the instruction REPNE do in this program.

4. What are the other variations of REP? Explain each of them.

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 29

4.a -BLOCK TRANSFER

Aim:To perform transfer of a block from data segment to extra segment using string

instructions.

Apparatus:TASM, PC

Algorithm:

1. Start

2. Initialize Data Segment

3. Initialize Extra Segment

4. Initialize SI with source offset address and DI with destination offset address.

5. Initialize DF =0

6. Store counts value of block in CX register.

7. Copy a content (byte) from data segment in extra segment till count reaches zero.

8. Set Break point Interrupt.

9. Exit from DOS prompt.

10. Stop

Program:

. model tiny

data segment

 srcdata db 'Empty vessels make much noise',24h

data ends

extra segment

 dstdata db 29 dup(0)

extra ends

code segment

 assume cs:code,ds:data,es:extra

start: mov ax,data

 mov ds,ax

 mov ax,extra

 mov es,ax

 mov si,offset srcdata

 mov di,offset dstdata

 cld

 mov cx,29

 rep movsb

 nop

 int 3h

 mov ah,4ch

 int 21h

code ends

end start

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 30

Result:

Transfer of a block from data segment to extra segment has been performed.

Exercise:

1. If the DF=1, will the SI and DI register decrement?

2. The destination memory is pointed by which register combination?

3. The source is pointed to by which register combination?

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 31

4.b - STRING REVERSAL

Aim:To perform reversal of a given string is available at data segment and store the resultant

string at extra segment using string instructions.

Apparatus:TASM, PC

Algorithm:

1. Start

2. Initialize Data Segment

3. Initialize Extra Segment

4. Initialize SI with source offset address of string1 and DI with destination offset

address of string2.

5. Perform addition on DI register and length of the string and store in DI register.

6. Initialize DF =0

7. Store counter register with length of the string.

8. Copy a content (byte) from data segment to extra segment till count reaches zero.

9. Set break point Interrupt.

10. Exit from DOS prompt.

11. Stop

Program:

.model tiny

data segment

 string1 db 'Empty'

 strlen equ ($-string1)

data ends

extra segment

string2 db 5 dup(0)

extra ends

code segment

 assume cs:code,ds:data,es:extra

start: mov ax,data

 mov ds,ax

mov ax,extra

 mov es,ax

 mov bx,offset string1

 mov si,bx

 mov di,offset string2

 add di,5

 cld

 mov cx,strlen

back: mov al,[si]

 mov es:[di],al ; Segment override prefix

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 32

 inc si

 dec di

 loop back

 int 3h

 mov ah,4ch

 int 21h

code ends

end start

Result:

The reversal of string has been performed.

Exercise:

1. Why BX register is added with ‘5’?

2. Why MOVS instruction is not used?

3. What is the function of LODS and STOS instructions?

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 33

4.c -STRING INSERTION

Aim:To perform insertion of sub string in to the main string is available at data segment and

the resultant string is stored at extra segment using string instructions.

Apparatus:TASM, PC

Algorithm:

1. Start

2. Initialize Data Segment

3. Initialize Extra Segment

4. Store SI with source offset address of string1 and DI with destination offset address of

string2.

5. Initialize DF =0

6. Move desired count value of string to CL register.

7. Copy Byte by Byte from data segment to extra segment till count reached to zero.

8. Read a byte from standard keyboard and write in the extra segment till the desired sub

string is stored into the extra segment based on DL byte resister.

9. Remaining data segment string content copy to extra segment based on desired count.

10. Set Break point Interrupt.

11. Exit from DOS prompt.

12. Stop

Program:

.model tiny

data segment

string1 db 'Empty vessels more noise$'

strlen equ ($-string1)

data ends

extra segment

string2 db strlen+5 dup(0)

extra ends

code segment

assume cs:code,ds:data,es:extra

start: mov ax, data

 mov ds, ax

 mov ax, extra

mov es, ax

mov si,offset string1

mov di,offset string2

cld

mov cx,14

rep movsb

mov dl,5

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 34

back: mov ah,01

int 21h

stos string2

dec dl

jnz back

mov cx,11

rep movsb

nop

int 3h

mov ah,4ch

int 21h

code ends

end start

Result:

The string insertion has been performed.

Exercise:

1. Why register ‘DI’ is loaded with 5?

2. What is the function of rep movsb?

3. What is the purpose of mov ah,01h & int 21h?

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 35

4.d - STRING DELETION

Aim:To perform deletion of sub string from the main string is available at data segment and

the resultant string is stored at extra segment using string instructions.

Apparatus:TASM, PC

Algorithm:

1. Start

2. Initialize Data Segment

3. Initialize Extra Segment

4. Store SI with source offset address of Data Segment and DI with offset address of

extra segment.

5. Initialize DF =0

6. Copy content from data segment to extra segment based on desired count value of CX

register reaches to zero.

7. Add SI with desired value to copy from desired value.

8. Initialize desired count value in CX register.

9. Copy a content Byte by Byte from data segment to extra segment till count reaches to

zero

10. Set Break point Interrupt.

11. Exit from DOS prompt.

12. Stop

Program:

.model tiny

data segment

 string1 db 'Empty vessels make more noise$'

 strlen equ ($-string1)

data ends

extra segment

 string2 db strlen-5 dup(0)

extra ends

code segment

 assume cs:code,ds:data,es:extra

start: mov ax,data

 mov ds,ax

 mov ax,extra

 mov es,ax

 mov si,offset string1

 mov di,offset string2

 cld

 mov cx,13

 rep movsb

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 36

 cld

 mov si,18

 mov cx,12

 rep movsb

 int 3h

 mov ah,4ch

 int 21h

code ends

end start

Result:

The string deletion has been performed.

Exercise:

1. What is the purpose of string length?

2. What does ‘equ’ stand for?

3. What is the purpose of label start after the end directive?

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 37

4.e - LENGTH OF THE STRING

Aim:To find the length of the string is available at data segment and the correspondent result

display at command window using string instructions.

Apparatus:TASM,PC

Algorithm:

1. Start

2. Initialize Data Segment

3. Copy the length of the string to BL register and initialize to zero.

4. Store SI with source offset address of string1.

5. Load a value from data segment string to AL and increment CL register.

6. Compare the content of AL register and end character of string.

7. If CF=1 go to step 5 other wise move CL value to res variable then compare CL with

BL register, if both are equal then print string length found correct message otherwise

print string length found incorrect on command window.

8. Set Break point Interrupt.

9. Exit from DOS prompt.

10. Stop

Program:

.model tiny

data segment

 string1 db 'Empty vessels make more noise$'

 strlen equ ($-string1)

 res db 0

 cort db 'strlength found correct', 0ah,0dh,24h

 incort db 'strlength found incorrect', 0ah,0dh,24h

data ends

code segment

 assume cs:code,ds:data

start: mov ax,data

 mov ds,ax

 sub cl,cl

 mov bl,strlen

 mov si,offset string1

back: lodsb

 inc cl

 cmp al,'$'

 jnz back

 mov res,cl

 cmp cl,bl

 jz correct

 mov dx,offset incort

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 38

 mov ah,09

 int 21h

jmp exit

correct: mov dx,offset cort

 mov ah,09

 int 21h

exit: int 3h

mov ah,4ch

 int 21h

code ends

end start

Result:

Thelength of the string has been performed.

Exercise:

1. What is the operation performed by the instruction cmp al, ‘$’?

2. What is function 09h / int 21h performed?

3. Why SI has not been incremented is the program?

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 39

4.f -STRING COMPARISION

Aim: To perform comparison of two strings, a source string is available at data segment and

another string is available at extra segment then the correspondent resultant message is display

at command window.

Apparatus:TASM, PC

Algorithm:

1. Start

2. Initialize Data Segment

3. Initialize Extra Segment

4. Store SI with source offset address of string1 and DI with offset address of string2.

5. Initialize DF =0

6. Store CL with length of the string.

7. Compare byte to byte from data segment counters with extra segment contents ill

count reaches to zero.

8. If two strings are equal, then print strings are equal message otherwise print strings

are not equal on command window.

9. Set Break point Interrupt.

10. Exit from DOS prompt.

11. Stop

Program:

.model tiny

data segment

 string1 db ‘Empty'

 strlen equ ($-string1)

 notsful db 'strings are unequal$'

 sful db 'strings are equal$'

data ends

extra segment

 string2 db‘Empty'

extra ends

code segment

 assume cs:code,ds:data,es:extra

start: mov ax,data

 mov ds,ax

 mov ax,extra

 mov es,ax

 mov si,offset string1

 mov di,offset string2

 cld

 mov cx,strlen

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 40

 rep cmpsb

 jz forw

 mov ah,09h

 mov dx,offset notsful

 int 21h

 jmp exitp

forw: mov ah,09h

 mov dx,offset sful

 int 21h

exitp: int 3h

mov ah,4ch

 int 21h

code ends

end start

Result:

Thecomparison of the two strings has been performed

Exercise:

1. What is the significance of CLD?

2. How does CMPSB perform the comparison?

3. Write comment on REP instruction?

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 41

5.ARITHMETIC , LOGICAL AND BIT MANIPULATION

OPERATIONS IN 8051

Aim:To perform arithmetic, logical and bit manipulation operations of 8051 microcontroller.

Apparatus:Keil IDE, PC

Algorithm:

1. Start

2. Move desired values or first number in accumulator register immediately.

3. Move desired values or second number in b register immediately.

4. Perform addition on the contents of a and b registers and store result in a register.

5. Perform subtraction on the contents of a and b registers and store results in a register.

6. Perform Multiplication on the contents of a and b registers and store result in a

register.

7. Perform division on the contents of a and b registers and store result in a register.

8. Perform OR, AND, XOR, NOT operations and bit manipulations on a and b registers

and check the resultant.

9. Stop

Program:

start:

mov a, #34h ;addition

mov b, #44h

add a, b

mov a, #44h ; subtraction

mov b,#34h

subb a, b

mov a, #34h ; multiplication

mov b, #44h

mul ab

mov a, #50h ; division

mov b, #05h

div ab

mov a, #05h ; or operation

anl a, #6

mov a, #03h ;and operation

orl a, #05

mov a, #05h ; rotate right

rr a

mov a, #05h ; rotate left

rl a

clr p1.0 ; bit manipulation

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 42

setb p1.0

clr c ; bit manipulation

setb c

end

Result:

The arithmetic, logical and bit manipulation operations have been performed.

Exercise:

1. Write arithmetic operations?

2. Write comment on MUL AB?

3.Write comment on DIV AB?

4.Define Immediate addressing mode?

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 43

6.TIMER COUNTER IN 8051

Aim:To perform Timer0 as Timer in mode 0 operation.

Apparatus:Keil IDE, Prog Isp, PC, 8051 micro controller kit, parallel bus, USB powered

89S52 Programmer.

Theory:

TMOD Bit Function:

Gate - OR gate enable bit which controls RUN/STOP of timer 1. Set to 1 by program to enable

timer to run if bit TR1 in TCON is set and signal on external interrupt INT1 is high. Cleared to

0 by program to enable time to run if bit TR1 is set

C/𝑇̅- Set to 1 by program to make timer 1 act as a counter by counting pulses from external

input pins 3.5. Cleared to zero by program to make timer act as a timer by counting internal

frequency.

M1 - Timer/counter operating mode select bit 1. Set/cleared by program to select mode.

M0 - Timer/counter operating mode select bit 0. Set/cleared by program to select mode.

Gate -OR gate enable bit which controls RUN/STOP of timer 0. Set to 1 by program to enable

timer to run if bit TR0 in TCON is set and signal on external interrupt INT0 is high. Cleared to

0 by program to enable time to run if bit TR0 is set.

C/𝑇̅- Set to 1 by program to make timer 0 act as a counter by counting pulses from external

input pin 3.4. Cleared to zero by program to make timer act as a timer by counting internal

frequency.

M1 - Timer/counter operating mode select bit 1. Set/cleared by program to select mode

M0 - Timer/counter operating mode select bit 0. Set/cleared by program to select mode.

M1 M0 Mode Description

0 0 0 Use the THX register as an 8-bit counter and the TLX as a 5-bit counter.

0 1 1
Use the THX register as an 8-bit counter and the TLX as an 8-bit

counter.

1 0 2 Use only the TLX register as an 8-bit counter.

1 1 3 In modes 0 - 2, Timers 0 and 1 may be programmed independently.

In mode 3:

Timer 0 in mode 3 becomes two separate 8-bit counters.

D7 D6 D5 D4 D3 D2 D1 D0

Gate C/𝑇̅ M1 M0 Gate C/𝑇̅ M1 M0

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 44

Timer 1 in mode 3 may still be used, but will generate no interrupts.

TMOD is not bit addressable. Direct Byte Address is 89h. The only difference in counting

and time is the source of the clock pulses to the counters.

TCON bit function:

8051 Timer

Control

(TCON) Special Function Register

Bit Symbol TCON Bit Function

7 TF1 Timer 1 Overflow flag. Set when timer rolls from all 1's to 0. Cleared

when processor vectors to execute interrupt service routine located at

program address 001Bh.

6 TR1 Timer 1 run control bit. Set to 1 by program to enable timer to count;

cleared to 0 by program to halt timer.

5 TF0 Timer 0 Overflow flag. Set when timer rolls from all 1's to 0. Cleared

when processor vectors to execute interrupt service routine located at

program address 000Bh.

4 TR0 Timer 0 run control bit. Set to 1 by program to enable timer to count;

cleared to 0 by program to halt timer.

3 IE1 External interrupt 1 Edge flag. Set to 1 when a high-to-low edge signal is

received on port 3.3 (INT1). Cleared when processor vectors to interrupt

service routine at program address 0013h. Not related to timer

operations.

2 IT1 External interrupt 1 signal type control bit. Set to 1 by program to enable

external interrupt 1 to be triggered by a falling edge signal. Set to 0 by

program to enable a low-level signal on external interrupt 1 to generate

an interrupt.

1 IE0 External interrupt 0 Edge flag. Set to 1 when a high-to-low edge signal is

received on port 3.2 (INT0). Cleared when processor vectors to interrupt

service routine at program address 0003h. Not related to timer

operations.

0 IT0 External interrupt 0 signal type control bit. Set to 1 by program to enable

external interrupt 1 to be triggered by a falling edge signal. Set to 0 by

program to enable a low-level signal on external interrupt 0 to generate

an interrupt.

D7 D6 D5 D4 D3 D2 D1 D0

TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 45

Bit addressable as TCON.0 to TCON.7, Direct Byte Address is 88h.

Interrupt Enable:

D7 D6 D5 D4 D3 D2 D1 D0

EA X ET2 ES ET1 EX1 ET0 EX0

Address: 0A8H (bit addressable)

EA – Global interrupt enable

X – Not defined

ET2 – Timer 2 interrupt enable

ES – Serial port interrupt enable

ET1 – Timer 1 interrupt enable

EX1 – External interrupt 1 enable

ET0 – Timer 0 interrupt enable

EX0 – External interrupt 0 enable

Algorithm:

1. Start

2. Initialize timer0 interrupt enable using IE Register.

3. Initially store timer0 with Zero

4. Initialize r7 as counter but initially zero.

5. Start timer0

6. Go to ISR of timer0 if timer0 interrupt occurs using its vector address else wait.

7. Jump to step 3.

8. Stop timer0 in ISR, increment r7 by 1 on each interrupt then copy content of r7

register to port 0

9. Delay

10. Move T0 with zero and start timer then return to step5

11. Stop

Program:

 ORG 0000

LJMP START

 ORG 0003H

INTRO:

 ORG 000BH

TIMER0:

LJMP TIMER0INTR

 ORG 0013H

INTR1:

 ORG 001BH

TIMER1:

 ORG 0023H

SERrx_tx:

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 46

 ORG 40H

start:

 mov psw,#00

 mov sp,#60h

 mov ie,#10000010b ; enable all - ex0,tm0,ex1,tm1,ser

 mov th0,#00

 mov tl0,#00

 mov r7,#0

 setb tr0

 jmp $

org 200h

timer0intr:

 clr tr0

 inc r7

 mov p0,r7

 call delay

 mov th0,#0 ;reload the higher byte

 mov tl0,#0 ; reload the lower byte of timer so timing

 ; restarts with desired value

 setb tr0 ;start the timer operations

 reti ; return from the interrupt

delay:

 mov r3,#0ffh

h2: mov r4,#0ffh

h1: djnz r4,h1

 djnz r3,h2

 ret

end

Result:

The Timer as timer in mode 0 operation has been performed.

Exercise:

1. Write TMOD format?

2. Write TCON format?

3. Write comment JMP $

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 47

7. INTERRUPT HANDLING IN 8051

Aim:To perform interrupt handling in 8051 microcontroller.

ApparatusKeil IDE, Prog Isp, PC, 8051 micro controller kit, parallel bus, USB powered

89S52 Programmer

Theory:

Interrupt EnableRegister:

D7 D6 D5 D4 D3 D2 D1 D0

EA X ET2 ES ET1 EX1 ET0 EX0

Address: 0A8H (bit addressable)

EA – Global interrupt enable

X – not defined

ET2 – Timer 2 interrupt enable

ES – Serial port interrupt enable

ET1 – Timer 1 interrupt enable

EX1 – External interrupt 1 enable

ET0 – Timer 0 interrupt enable

EX0 – External interrupt 0 enable

Interrupt Priority Register :

D7 D6 D5 D4 D3 D2 D1 D0

- - PT2 PS PT1 PX1 PT0 PX0

Address: 0B8H (bit addressable)

x – not defined

PT2 – Priority for timer 2 interrupt

PS – Priority for serial port interrupt

PT1 – Priority for timer 1 interrupt

PX1 – Priority for external interrupt 1

PT0 – Priority for timer 0 interrupt

PX0 – Priority for external interrupt 0

Algorithm:

1. Start

2. Configure intr0, intr1 interrupt enable using IE Register.

3. Initialize r7 as counter but initially zero.

4. Start checking interrupts.

5. Go to ISR of intr0 if intr0 interrupt occurs using its vector address else go to step 8

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 48

6. In ISR of intr0, increment r7 by 1 on each interrupt then copy content of r7 register to

port 0.

7. Give delay.

8. Go to ISR of intr1, if intr1 interrupt occurs using its vector address else go to step 4

9. In ISR of intr1, decrement r7 by 1 on each interrupt then copy content of r7 register to

port 0.

10. Go to step 4.

11. Stop

Program:

ORG 0000

LJMP START

 ORG 0003H

EXTERNALINTRO:

LJMP EXINTR0

 ORG 000BH

TIMER0:

 ORG 0013H

EXTERNALINTR1:

LJMP EXINTR1

 ORG 001BH

TIMER1:

 ORG 0023H

SERrx_tx:

 ORG 40H

start:

 mov psw,#00

 mov sp,#60h

 mov p0,#0h

 mov p3,#0fh

 clr it0

setb it0 ; make the interrupt0 on transition high to low

 setb it1; make the interrupt1 on transition high to low

 mov ie,#10000101b ; enable all - ex0 & ex1

 mov r7,#0

 jmp $

 org 200h

exintr0:

 inc r7

 mov p0,r7

 call delay

 reti ; return from the interrupt

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 49

exintr1:

 dec r7

 mov p0,r7

 call delay

 reti

delay:

 mov r3,#0ffh

h2: mov r4,#0ffh

h1: djnz r4,h1

 djnz r3,h2

 ret

end

Result:

The interrupt handling of 8051 operation has been performed.

Exercise:

1. Write IE format?

2. Write differences between edge and level triggering?

3. Write comment on DJNZ instruction?

4. Write comment on RETI instruction?

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 50

8.UART Operation in 8051

Aim:To perform serial communication between 8051 kit and PC using UART of 8051.

Apparatus:Keil IDE, Prog Isp, PC, 8051 micro controller kit, Rs 232 cableUSB powered

89S52 Programmer.

Theory:

One of the 8051s many powerful features is its integrated UART, otherwise known as

a serial port. The fact that the 8051 has an integrated serial port means that you may very easily

read and write values to the serial port. If it were not for the integrated serial port, writing a

byte to a serial line would be a rather tedious process requiring turning on and off one of the

I/O lines in rapid succession to properly "clock out" each individual bit, including start bits,

stop bits, and parity bits. However, we do not have to do this. Instead, we simply need to

configure the serial ports operation mode and baud rate. Once configured, all we have to do is

write to an SFR to write a value to the serial port or read the same SFR to read a value from

the serial port. The 8051 will automatically let us know when it has finished sending the

character we wrote and will also let us know whenever it has received a byte so that we can

process it. We do not have to worry about transmission at the bit level--which saves us quite a

bit of coding and processing time.

SCON:

Setting the Serial Port Mode

The first thing we must do when using the 8051s integrated serial port is, obviously,

configure it. This lets us tell the 8051 how many data bits we want, the baud rate we will be

using, and how the baud rate will be determined.

First, let’s present the "Serial Control" (SCON) SFR and define what each bit of the SFR

represents:

Bit Name Bit

Address

Explanation of function

0 RI 98h Receive Flag. Set when a byte has been completely received.

1 TI 99h Transmit Flag. Set when a byte has been completely transmitted.

2 RB8 9Ah Receive bit 8. The 9th bit received in mode 2 and 3.

3 TB8 9Bh Transmit bit 8. The 9th bit to transmit in mode 2 and 3.

4 REN 9Ch Receiver Enable. This bit must be set in order to receive

characters.

5 SM2 9Dh Multiprocessors Communications Enable (explained later)

6 SM1 9Eh Serial port mode bit 1.

7 SM0 9Fh Serial port mode bit 0

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 51

Additionally, it is necessary to define the function of SM0 and SM1 by an additional table:

SM0 SM1 Serial Mode Explanation Baud Rate

0 0 0 8-bit Shift Register Oscillator / 12

0 1 1 8-bit UART Set by Timer 1 (*)

1 0 2 9-bit UART Oscillator / 64 (*)

1 1 3 9-bit UART Set by Timer 1 (*)

(*) Note: The baud rate indicated in this table is doubled if PCON.7 (SMOD) is set.

The SCON SFR allows us to configure the Serial Port. Thus, well go through each bit and

review its function.

The first four bits (bits 4 through 7) are configuration bits.

Bits SM0 and SM1 let us set the serial mode to a value between 0 and 3, inclusive. The four

modes are defined in the chart immediately above. As you can see, selecting the Serial Mode

selects the mode of operation (8-bit/9-bit, UART or Shift Register) and also determines how

the baud rate will be calculated. In modes 0 and 2 the baud rate is fixed based on the oscillator’s

frequency. In modes 1 and 3 the baud rate is variable based on how often Timer 1 overflows.

We talk more about the various Serial Modes in a moment.

The next bit, SM2, is a flag for "Multiprocessor communication." Generally, whenever a byte

has been received the 8051 will set the "RI" (Receive Interrupt) flag. This lets the program

know that a byte has been received and that it needs to be processed. However, when SM2 is

set the "RI" flag will only be triggered if the 9th bit received was a "1". That is to say, if SM2

is set and a byte is received whose 9th bit is clear, the RI flag will never be set. This can be

useful in certain advanced serial applications. For now it is safe to say that you will almost

always want to clear this bit so that the flag is set upon reception of any character.

The next bit, REN, is "Receiver Enable." This bit is very straightforward: If you want to receive

data via the serial port, set this bit. You will almost always want to set this bit.The last four bits

(bits 0 through 3) are operational bits. They are used when actually sending and receiving data-

-they are not used to configure the serial port.

The TB8 bit is used in modes 2 and 3. In modes 2 and 3, a total of nine data bits are transmitted.

The first 8 data bits are the 8 bits of the main value, and the ninth bit is taken from TB8. If TB8

is set and a value is written to the serial port, the datas bits will be written to the serial line

followed by a "set" ninth bit. If TB8 is clear the ninth bit will be "clear."

The RB8 also operates in modes 2 and 3 and functions essentially the same way as TB8, but

on the reception side. When a byte is received in modes 2 or 3, a total of nine bits are received.

In this case, the first eight bits received are the data of the serial byte received and the value of

the ninth bit received will be placed in RB8.

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 52

TI means "Transmit Interrupt." When a program writes a value to the serial port, a certain

amount of time will pass before the individual bits of the byte are "clocked out" the serial port.

If the program were to write another byte to the serial port before the first byte was completely

output, the data being sent would be garbled. Thus, the 8051 lets the program know that it has

"clocked out" the last byte by setting the TI bit. When the TI bit is set, the program may assume

that the serial port is "free" and ready to send the next byte.

Finally, the RI bit means "Receive Interrupt." It functions similarly to the "TI" bit, but it

indicates that a byte has been received. That is to say, whenever the 8051 has received a

complete byte it will trigger the RI bit to let the program know that it needs to read the value

quickly, before another byte is read.

Setting the Serial Port Baud Rate

Once the Serial Port Mode has been configured, as explained above, the program must

configure the serial ports baud rate. This only applies to Serial Port modes 1 and 3. The Baud

Rate is determined based on the oscillator’s frequency when in mode 0 and 2. In mode 0, the

baud rate is always the oscillator frequency divided by 12. This means if your crystal is 11.059

MHz, mode 0 baud rate will always be 921,583 baud. In mode 2 the baud rate is always the

oscillator frequency divided by 64, so a 11.059Mhz crystal speed will yield a baud rate of

172,797.

In modes 1 and 3, the baud rate is determined by how frequently timer 1 overflows. The more

frequently timer 1 overflows, the higher the baud rate. There are many ways one can cause

timer 1 to overflow at a rate that determines a baud rate, but the most common method is to put

timer 1 in 8-bit auto-reload mode (timer mode 2) and set a reload value (TH1) that causes Timer

1 to overflow at a frequency appropriate to generate a baud rate.

To determine the value that must be placed in TH1 to generate a given baud rate, we may use

the following equation (assuming PCON.7 is clear).

TH1 = 256 - ((Crystal / 384) / Baud)

If PCON.7 is set then the baud rate is effectively doubled, thus the equation becomes:

TH1 = 256 - ((Crystal / 192) / Baud)

For example, if we have an 11.059 MHz crystal and we want to configure the serial port to

19,200 baud we try plugging it in the first equation:

TH1 = 256 - ((Crystal / 384) / Baud)

TH1 = 256 - ((11059000 / 384) / 19200)

TH1 = 256 - ((28,799) / 19200)

TH1 = 256 - 1.5 = 254.5

As you can see, to obtain 19,200 baud on a 11.059Mhz crystal we have to set TH1 to 254.5. If

we set it to 254 we will have achieved 14,400 baud and if we set it to 255 we will have achieved

28,800 baud. Thus were stuck...

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 53

But not quite... to achieve 19,200 baud we simply need to set PCON.7 (SMOD). When we do

this we double the baud rate and utilize the second equation mentioned above. Thus we have:

TH1 = 256 - ((Crystal / 192) / Baud)

TH1 = 256 - ((11059000 / 192) / 19200)

TH1 = 256 - ((57699) / 19200)

TH1 = 256 - 3 = 253

Here we are able to calculate a nice, even TH1 value. Therefore, to obtain 19,200 baud with an

11.059MHz crystal we must:

1. Configure Serial Port mode 1 or 3.

2. Configure Timer 1 to timer mode 2 (8-bit auto-reload).

3. Set TH1 to 253 to reflect the correct frequency for 19,200 baud.

4. Set PCON.7 (SMOD) to double the baud rate.

Writing to the Serial Port

Once the Serial Port has been property configured as explained above, the serial port is ready

to be used to send data and receive data. If you thought that configuring the serial port was

simple, using the serial port will be a breeze.To write a byte to the serial port one must simply

write the value to the SBUF (99h) SFR. For example, if you wanted to send the letter "A" to

the serial port, it could be accomplished as easily as:

MOV SBUF, #A

Upon execution of the above instruction the 8051 will begin transmitting the character via the

serial port. Obviously transmission is not instantaneous--it takes a measureable amount of time

to transmit. And since the 8051 does not have a serial output buffer we need to be sure that a

character is completely transmitted before we try to transmit the next character.

The 8051 lets us know when it is done transmitting a character by setting the TI bit in SCON.

When this bit is set we know that the last character has been transmitted and that we may send

the next character, if any. Consider the following code segment:

CLR TI; be sure the bit is initially clear

MOV SBUF, #A; Send the letter A to the serial port

JNB TI, $; Pause until the TI bit is set.

The above three instructions will successfully transmit a character and wait for the TI bit to be

set before continuing. The last instruction says "Jump if the TI bit is not set to $"--$, in most

assemblers, means "the same address of the current instruction." Thus the 8051 will pause on

the JNB instruction until the TI bit is set by the 8051 upon successful transmission of the

character.

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 54

Reading the Serial Port

Reading data received by the serial port is equally easy. To read a byte from the serial port one

just needs to read the value stored in theSBUF (99h) SFR after the 8051 has automatically set

the RI flag in SCON.

For example, if your program wants to wait for a character to be received and subsequently

read it into the Accumulator, the following code segment may be used:

JNB RI,$;Wait for the 8051 to set the RI flag

MOV A,SBUF ;Read the character from the serial port

The first line of the above code segment waits for the 8051 to set the RI flag; again, the 8051

sets the RI flag automatically when it receives a character via the serial port. So as long as the

bit is not set the program repeats the "JNB" instruction continuously.

Once the RI bit is set upon character reception the above condition automatically fails and

program flow falls through to the "MOV" instruction which reads the value.

Algorithm:

1. Start

2. Initialize TMOD register with 20H immediately to operate timer1 in mode2 as a timer.

3. Move TH1 register with FDH to get the 9600 baud rate on serial communication.

4. Initialize SCON register with 52 H to configure serial port mode operation.

5. Start timer1.

6. Initialize new line and carriage for serial communication.

7. Store DPTR register a with offset address of text.

8. Call subroutine to print the desired message.

9. Call get char subroutine to read character from the keyboard serially.

10. Call put char subroutine to write a character on serial port.

11. Repeat 9

Program:

start:

 mov tmod,#00100000b

 mov th1,#0fdh

 setb tr1

 mov scon,#01010010b

 call newline

 mov dptr,#txt

 call putstring

repeat: call getchar

call put char

 anl a,#0fh

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 55

 mov p0 ,a

 sjmp repeat

putstring:

 clr a

 movc a,@a+dptr

 jz exit

 call putchar

 inc dptr

 sjmp putstring

exit: ret

putchar:

 jnb ti,$

 clr ti

 mov sbuf,a

 ret

getchar:

 jnb ri,$

 clr ri

 mov a,sbuf

 ret

newline:

 mov a,#0dh

 call putchar

 mov a,#0ah

 call putchar

 ret

txt: db 'mpmc lab', 0ah,0dh,00h

 end

Result:

The serial communication between 8051 kit and PC operation has been performed.

Exercise:

1. Write SCONformat?

2. Write function of SBUF?

3. Write comment on JNB TI, $?

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 56

9. Stepper with 8051

Aim:To perform stepper motor Interfacing with 8051.

Apparatus:Keil IDE, Prog Isp, PC, 8051 micro controller kit, parallel bus, stepper motor,

USB powered 89S52 Programmer

Theory:

Introduction

 Data acquisition and control represents the most popular applications of

microprocessors. Stepper Motor control is a very popular applications of microprocessors in

control area, as stepper motor is capable of accepting pulses directly from the microprocessor

and move accordingly.

There are three types of stepper motors:

a) Permanent magnet (PM)]

b) Variable Reluctance (VR)

c) Hybrid Synchronous Stepper Motor

Specification of the stepper motor used:

 The motor is reversible one with a torque of 3kgcm. The power requirement is +5VDC

@1.2A current per winding at full torque. The step angle is 1.8o, i.e for every single excitation,

the motor shaft rotates by 1.8o. for the motor to rotate one full revolution (360o), number of

steps required is 200. The stepper motor used has four stator windings which are brought out

through colored wires terminated at a 4 pin connector.

Stepping Angle = 360/ No. of rotor teeth

 Where stepper motor no. of rotor teeth are 200, hence stepping angle is 1.8

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 57

Clock wise Rotation

Steps A B C D

1 0 1 1 1

2 1 0 1 1

3 1 1 0 1

4 1 1 1 0

Anticlock wise Rotation

Steps A B C D

1 1 1 1 0

2 1 1 0 1

3 1 0 1 1

4 0 1 1 1

Stepper motor connections - PIN Number from bottom on kit

Brown (Ground)-2PIN

Red -4PIN

Orange -5 PIN

Yellow -6 PIN

Green -7 PIN

Algorithm:

1. Start

2. Configure port0 as output port.

3. Move p0 with 70 immediately then call delay subroutine.

4. Move p0 with b0 immediately then call delay subroutine.

5. Move p0 with d0 immediately then call delay subroutine.

6. Move p0 with e0 immediately then call delay subroutine.

7. Go to step 3.

8. Stop

Program:

org 00h

mov p0, #00h // initiates p0 as the output port

main: mov p0, #70h

 call delay

 call delay

 mov p0, #0b0h

 call delay

 call delay

 mov p0, #0d0h

 call delay

 call delay

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 58

 mov p0, #0e0h

 call delay

 call delay

 sjmp main ; jumps back to the main program

delay:

 mov r3, #0ffh

h2: mov r4, #0ffh

h1: djnz r4, h1

 djnz r3, h2

 ret

end

Result:

The Stepper motor interfacing with 8051 has been performed.

Exercise:

1. How many steps are there for revolutions?

2. Each step corresponds to how many degrees?

3. How many coils dose the stepper motors have?

4. What is the purpose of resistor connected between base & ground?

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 59

10. Matrix Keyboard 8051 kit and PC

Aim:To perform matrix keyboard interfacing using 8051 microcontroller trainer kit and PC.

Apparatus:Keil IDE, Prog Isp, PC, 8051 micro controller kit, parallel bus, USB powered

89S52 Programmer

Theory:

The matrices are actually an interface technique. It can be used to interface inputs like

the PC keyboard keys, but also to control multiple outputs like LEDs. According to this

technique, the I/O are divided into two sections: the columns and the rows. You can imagine a

matrix as an excel sheet. Here is a 4 x 4 matrix.

The blue lines are the columns and the red lines the rows. There are 16 knots that the

rows and columns intersect. The columns and the rows are NOT in contact! Suppose that we

want to make a key matrix. To do this, we will have to connect a button to each knot. The

buttons will have a push-to-make contact. When the operator pushes this button, it will connect

the column and the row that it corresponds to. Now I will put the push-to-make buttons onto

the matrix. The buttons are named with the Column:Row name that they connect. For example,

the top-left button is named A1 and the bottom right is named D4.

 Key-matrix working

To understand the operation principle, we will re-draw the above matrix without colors.

we will also put connection pins to each row and column wire. Then, we will give power to

only one column, the column B. The wire that is red, indicates that it has power, and the button

that is purple indicates that the button is pressed. Then, we will simulate a button press to button

number B3:

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 60

Watch the above animation. The column wire B has power all the time. No other wire

has power, until the button B3 is pressed. This button makes contact between the column B

and the row 3. Because column B has power, the row 3 will also have power as long as the

button B3 is pressed! What this means it that, if we know which column has currently power,

and we watch the rows, then we can understand which button was pressed, if we detect power

on a row! If for example we know that the column B has power, and we detect also power to

row 3, then we understand that the button B3 is pressed.

Keyboard Circuit Diagram

Algorithm:

1. Start

2. Call a subroutine to initialize LCD module interface with 8051.

3. Print predefined message on LCD module.

4. Configure P1 upper lines as input port and P1 lower lines as output port.

5. Scan the key row 0 to row3 then check the button pressing status from coloumn0 to

coloum3 then if key has been pressed then send its corresponding ASCII value send to

LCD module else go to next step.

6. Repeat 5

7. Stop

Program:

start:

 call lcm

lcm: call lcm_init

 clr p3.5

 call again

 jmp $

w_msg:

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 61

 mov a,#0

 movc a,@a+dptr

 cjne a,#00,do_msg

 ret

do_msg:

 call w_data

 inc dptr

 jmp w_msg

w_data:

 setb p3.6 ; //register select

 setb p3.7 ; //enable

 mov p0,a;

 clr p3.7; //enable

 clr p3.6 ; //register select

 call delay15;

 ret

w_instrn:

 clr p3.6; //register select

 clr p3.7 ; //enable

 mov p0,a ;

 setb p3.7 ; //enable

 clr p3.7 ; //enable

 call delay15 ;

 call delay15

 ret

delay15:

 mov r7,#255

 djnz r7,$

 ret

lcm_init:

 call delay15;

 mov a,#30h

 call w_instrn ;

 mov a,#30h

 call w_instrn;

 mov a,#30h

 call w_instrn;

 mov a,#38h

 call w_instrn;

 mov a,#0fh

 call w_instrn; w_instrn(0x38);

 mov a,#01h

 call w_instrn; w_instrn(0x38);

 mov a,#06h

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 62

 call w_instrn; w_instrn(0x38);

 ret

again: mov a,#'k'

 call w_data

mov a,#'e'

call w_data

 mov a,#'y'

 call w_data

key : mov p1,#0f0h

 clr p1.0

 setb p1.1

setb p1.2

 setb p1.3

k0: jb p1.4, k1

 call delay

 call delay

 mov a, #30h

 call w_data

 call delay

 call delay

 k1: jb p1.5, k2

 call delay

 call delay

 mov a, #31h

 call w_data

 call delay

 call delay

k2: jb p1.6, k3

 call delay

 call delay

 mov a, #32h

 call w_data

 call delay

 call delay

k3: jb p1.7, k4

 call delay

 call delay

 mov a, #33h

 call w_data

 call delay

 call delay

k4: setb p1.0

 clr p1.1

 jb p1.4, k5

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 63

call delay

call delay

mov a, #34h

call w_data

call delay

call delay

 k5:jb p1.5, k6

call delay

call delay

 mov a, #35h

 call w_data

 call delay

 call delay

k6: jb p1.6, k7

 call delay

 call delay

 mov a, #36h

 call w_data

 call delay

 call delay

k7: jb p1.7, k8

 call delay

 call delay

 mov a, #37h

 call w_data

 call delay

 call delay

k8: setb p1.1

 clr p1.2

 jb p1.4, k9

 call delay

 call delay

 mov a, #38h

 call w_data

 call delay

 call delay

 k9: jb p1.5, k10

 call delay

 call delay

 mov a, #39h

 call w_data

 call delay

k10: jb p1.6, k11

 call delay

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 64

 call delay

 mov a, #41h

 call w_data

 call delay

 call delay

k11: jb p1.7, k12

 call delay

 call delay

 mov a, #42h

 call w_data

 call delay

 call delay

k12: setb p1.2

 clr p1.3

 jb p1.4, k13

 call delay

 call delay

 mov a, #43h

 call delay

 call delay

 k13: jb p1.5, k14

 call delay

 call delay

 mov a, #44h

call w_data

call delay

call delay

k14: jb p1.6, k15

 call delay

 call delay

 mov a, #45h

 call w_data

 call delay

 call delay

k15: jb p1.7, k16

 call delay

 call delay

 mov a, #46h

 call w_data

call delay

call delay

k16: setb p1.3

jmp key

delay : mov r6,#0a6h

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 65

dd1: mov r7,#50h

 djnz r7,$

 djnz r6,dd1

 ret

 end

Result:

The matrix keyboard interfacing with 8051 has been performed.

Exercise:

1. Write SCON format?

2. Write matrix keyboard scanning?

3. Define debounce delay

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 66

11.Seven Segment Display (SSD) interface with 8051 kit

Aim:To perform seven segment display(SSD) interfacing using 8051 microcontroller trainer

kit.

Apparatus:Keil IDE, Prog Isp, PC, 8051 micro controller kit, USB powered 89S52

Programmer

Theory:

Seven segment displays are used to indicate numerical information. Seven segments display

can display digits from 0 to 9 and even we can display few characters like A, b, C, H, E, e, F,

etc. These are very popular and have many more applications. 7 Segment Display works by

interfacing 7 Segment Display to 8051 Microcontroller.

This system displays the digits from 0 to 9 continuously with a predefined delay.

Circuit Principle:

Seven segment displays internally consist of 8 LEDs. In these LEDs, 7 LEDs are used

to indicate the digits 0 to 9 and single LED is used for indicating decimal point. Generally

seven segments are two types, one is common cathode and the other is common anode.

In common cathode, all the cathodes of LEDs are tied together and labeled as

common and the anode are left alone. In common anode, seven segments display all the

anodes are tied together and cathodes are left freely. Below figure shows the internal

connections of seven segment Display.

D2 D3 D4 D5 D6 D7 D8

a

D1

b c d e f g dp

com

Common Cathode

com

Common Anode

D1 D2 D3 D4 D5 D6 D7 D8

a b c d e f g h

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 67

Circuit Diagram

Schematic Diagram :

Algorithm:

1. Start

2. Configure P2 as output port.

3. Move accumulator with 01H immediately then send the content of accumulator to P2

to display as 0 on SSD devices and give delay.

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 68

4. Select SSD device by writing logic1 to P2.0 then use P2 upper lines to print digits on

SSD devices from 1 to 9 (BCD logic representation) and give delay on each content to

display on SSD devices respectively.

5. Go to step 3

6. Stop

Program:

org 0000h

start: mov p2,#00h

 setb p2.0

 l1: mov a,#01h

 mov p2,a

 call delay

 call delay

 call delay

 mov a,#11h

 mov p2,a

 call delay

 call delay

 call delay

 mov a,#21h

 mov p2,a

 call delay

 call delay

 call delay

 mov a,#31h

 mov p2,a

 call delay

 call delay

 call delay

 mov a,#41h

 mov p2,a

 call delay

 call delay

 call delay

 mov a,#51h

 mov p2,a

 call delay

 call delay

 call delay

 mov a,#61h

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 69

 mov p2,a

 call delay

 call delay

 call delay

 mov a,#71h

 mov p2,a

 call delay

 call delay

 call delay

 mov a,#81h

 mov p2,a

 call delay

 call delay

 call delay

 mov a,#91h

 mov p2,a

 call delay

 call delay

 call delay

 sjmp l1

delay:

 mov r3,#0ffh

h2: mov r4,#0ffh

h1: djnz r4,h1

 djnz r3,h2

 ret

end

Result:

The SSD interfacing with 8051 has been performed.

Exercise:

1. Write types of seven segment displays.

2. How decimal point is different from seven segments?

3. Write applications of seven segment display.

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 70

12.LED interface with 8051 kit

Aim:To perform LED interfacing using 8051 microcontroller trainer kit.

Apparatus:Keil IDE, Prog Isp, PC, 8051 micro controller kit, parallel bus, led

display,USB powered 89S52 Programmer,

Theory:

The circuit mainly consists of AT89S52 microcontroller. AT89S52 belongs to the family of

8051 microcontroller. It is an 8-bit microcontroller. This microcontroller has 4KB of Flash

Programmable and Erasable Read Only Memory and 128 bytes of RAM. It has two 16 bit

timers/counters. It supports USART communication protocol. It has 40 pins. There are four

ports are designated as P0, P1, P2, and P3. Here we used P0 as outputport.

Circuit Diagram :

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 71

Schematic Diagram :

Algorithm:

1. Start

2. Configure port0 as output port.

3. Move accumulator to zero immediately.

4. Move content of accumulator to port0

5. Give delay.

6. Move accumulator with FF immediately.

7. Move content of accumulator to port0

8. Give delay.

9. Go to step 3

10. Stop

Program :

org 0000h

start:

 mov a,00h

 mov p0,a

 call delay

 call delay

 call delay

 mov a,0ffh

 mov p0,a

 call delay

 call delay

 call delay

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 72

 sjmp start

delay:

 mov r3, #0ffh

h2: mov r4, #0ffh

h1: djnz r4, h1

 djnz r3, h2

ret

 end

Result :

The LED interfacing with 8051 has been performed.

Exercise:

1. Write abbreviation of LED.

2. Describe spontaneous emission of light in LED.

3. Which biasing is used in LED while turn on.

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 73

13. LCD Module Interfacing

Aim:To perform LCD module interfacing with 8051 micro controller.

Apparatus:Keil IDE, Prog Isp, PC, 8051 micro controller kit, parallel bus, led display,USB

powered 89S52 Programmer

Theory:

The Pin Assignment of LCD Module

LCD MODULE CIRCUIT DIAGRAM

Pin Descriptiion

1 VSS GND(Ground)

2 Vcc (Supply Voltage)

3 Vee (Contrast Voltage)

4 RS (Instruction/Register select)

5 R/W (Read/Write)

6 E (Clock)

7 D0 (Data 0)

8 D1 (Data 1)

9 D2 (Data 2)

10 D3 (Data 3)

11 D4 (Data 4)

12 D5 (Data 5)

13 D6 (Data 6)

14 D7 (Data 7)

15 A(Led+) Anode for LED Backlight

16 K(LED-) Cathode for LED Backlight

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 74

Algorithm:

1. Start

2. Call a subroutine to initialize LCD modules Interface with 8051.

3. Move DPTR register with offset address of message1.

4. Call message display subroutine to print the predefined message by using DPTR and

use w_data subroutine to send data on LCD and w_instrn subroutine to send

command on LCD module.

5. Go to step 3.

6. Stop

Program:

start:

 call lcm

lcm: call lcm_init

 clr p3.5

 //mov a,#48h

 //call w_data

 mov dptr,#msg1

 call w_msg

 jmp $

w_msg:

 mov a, #0

 movc a,@a+dptr

 cjne a,#00,do_msg

 ret

do_msg:

 call w_data

 inc dptr

 jmp w_msg

w_data:

 setb p3.6 ; //register select

 setb p3.7 ; //enable

 mov p0,a;

 clr p3.7; //enable

 clr p3.6 ; //register select

 call delay15;

 ret

w_instrn:

 clr p3.6; //register select

 clr p3.7 ; //enable

 mov p0,a ;

 setb p3.7 ; //enable

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 75

 clr p3.7 ; //enable

 call delay15 ;

 call delay15

 ret

delay15:

 mov r7,#255

 djnz r7,$

 ret

lcm_init:

 call delay15;

 mov a,#30h

 call w_instrn ;

 mov a,#30h

 call w_instrn;

 mov a,#30h

 call w_instrn;

 mov a,#38h

 call w_instrn;

 mov a,#0fh

 call w_instrn; w_instrn(0x38);

 mov a,#01h

 call w_instrn; w_instrn(0x38);

 mov a,#06h

 call w_instrn; w_instrn(0x38);

 ret

 msg1: db “welcome", 00

 end

Result:

The LCD module is interfaced with 8051micro controller.

Exercise:

1. Write LCD control word format?

2. How many characters are displayed at each line of LCD?
3. Write significance of RS and EN?
4. Write significance of 38H?

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 76

14. Sequence Generator

Aim:To generate a Sequenceusing UART of 8051 micro controller.

Apparatus:Keil IDE, Prog Isp, PC, 8051 micro controller kit, parallel bus, USB powered

89S52 Programmer.

Algorithm :

1. Start

2. Initialize TMOD register with 20H immediately to configure timer1 in mode 2 as timer.

3. Move TH1 register with FDH to get the 9600 baud rate on serial communication.

4. Initialize SCON register with 52 H to configure serial port mode operation.

5. Start timer1.

6. Initialize new line and carriage for serial communication.

7. Store DPTR a with offset address of text.

8. Call putstring subroutine to print the desired message.

9. Initialize r1 with 09 and r0 with 00h immediately.

10. Increment r0 by 1 and add to accumulator.

11. Perform addition 30H with accumulator content.

12. Call putstring subroutine to print the number on serial monitor using accumulator

content.

13. Decrement r1 by 1 check r1 value is zero if not zero go to step 10 otherwise next line.

14. Repeat step 9.

Program :

org 00h

start:

 mov tmod,#00100000b

 mov th1,#0fdh

 setb tr1

 mov scon,#01010010b

 call newline

 mov dptr,#txt

 call putstring

repeat:

 mov a,#00h

 mov r1, #09h

 mov b,a

 mov r0,#00h

 l1: inc r0

 add a,r0

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 77

 orl a,#30h

 call putchar

 call newline

 clr a

 djnz r1,l1

 clr a

sjmp repeat

putstring:

clr a

movc a,@a+dptr

jz exit

call putchar

inc dptr

sjmp putstring

exit: ret

putchar:

 jnb ti,$

 clr ti

 mov sbuf,a

 ret

getchar:

 jnb ri,$

 clr ri

 mov a,sbuf

 ret

newline:

 mov a,#0dh

 call putchar

 mov a,#0ah

 call putchar

 ret

 txt: db 'sequence is to be printed:', 0ah,0dh,00h

end

Result :

The generation of a sequence using UART of 8051 micro controller is done.

Exercise :

1. Write PCON format?

2. Write comment on JNB RI, $?

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 78

15. Interface 8bit ADC to 8051

Aim:To interface 8 bit ADC with 8051 micro controller.]

Apparatus:Keil IDE, Prog Isp, PC, 8051 micro controller kit, parallel bus, USB powered

89S52 Programmer, ADC0804.

Theory:

Description :

The ADC0804 series are versatile 8-Bit μP compatible general purpose ADC converters

operate on single 5-Vsupply. These devices are treated as a memory location or I/O port to a

micro-processor system withoutadditional interface logic. The outputs are Tri-state latched

which facilitate interfacing to micro-processor controlbus. The converter is designed with a

differential potentiometric ladder, a circuit equivalent of the 256R network.It contains analog

switches sequenced by successive approximation logic. A functional diagram of the

ADCconverter is shown in Functional Block Diagram. All of the package pinouts are shown

and the major logic controlpaths are drawn in heavier weight lines. The differential analog

voltage input has good common mode-rejectionand permits offsetting the analog zero-input

voltage value. Moreover, the input reference voltage can be adjustedto allow encoding small

analog voltage span to the full 8-bits resolution. To ensure start-up under all possibleconditions,

an external 𝑊𝑅 pulse is required during the first power-up cycle.

Using a SAR logic the most significant bit is tested first and after 8 comparisons (64

clock cycles) a digital 8-bitbinary code (1111 1111 = full-scale) is transferred to an output latch

and then an interrupt is asserted (𝐼𝑁𝑇𝑅̅̅ ̅̅ ̅̅ ̅makes a high-to-low transition). A conversion in process

can be interrupted by issuing a second start command.The device may be operated in the free-

running mode by connecting 𝐼𝑁𝑇𝑅̅̅ ̅̅ ̅̅ ̅ to the 𝑊𝑅̅̅ ̅̅ ̅ input with 𝐶𝑆̅̅̅̅ =0.

On the high-to-low transition of the 𝑊𝑅̅̅ ̅̅ ̅ input the internal SAR latches and the shift register

stages are reset. Aslong as the 𝐶𝑆̅̅̅̅ input and 𝑊𝑅̅̅ ̅̅ ̅input remain low, the ADC will remain in a

reset state. Conversion will start from 1to 8 clock periods after at least one of these inputs

makes a low-to-high transition.

The converter is started by having 𝐶𝑆̅̅̅̅ and 𝑊𝑅̅̅ ̅̅ ̅ simultaneously low. This sets the start

flip-flop (F/F) and theresulting “1” level resets the 8-bit shift register, resets the Interrupt

(𝐼𝑁𝑇𝑅) F/F and inputs a “1” to the D flop,F/F1, which is at the input end of the 8-bit shift

register. Internal clock signals then transfer this “1” to the Qoutput of F/F1. The AND gate,

G1, combines this “1” output with a clock signal to provide a reset signal to thestart F/F. If the

set signal is no longer present (either 𝑊𝑅̅̅ ̅̅ ̅or 𝐶𝑆̅̅̅̅ is a “1”) the start F/F is reset and the 8-bit

shiftregister then can have the “1” clocked in, which starts the conversion process. If the set

signal were to still bepresent, this reset pulse would have no effect (both outputs of the start

F/F would momentarily be at a “1” level)and the 8-bit shift register would continue to be held

in the reset mode. This logic therefore allows for wide 𝐶𝑆̅̅̅̅ and 𝑊𝑅̅̅ ̅̅ ̅ signals and the converter

will start after at least one of these signals returns high and the internal clocksagain provide a

reset signal for the start F/F.

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 79

After the “1” is clocked through the 8-bit shift register (which completes the SAR

search) it appears as the inputto the D-type latch, LATCH 1. As soon as this “1” is output from

the shift register, the AND gate, G2, causes thenew digital word to transfer to the Tri-state

output latches. When LATCH 1 is subsequently enabled, the Q outputmakes a high-to-low

transition which causes the INTR F/F to set. An inverting buffer then supplies the 𝐼𝑁𝑇𝑅̅̅ ̅̅ ̅̅ ̅

inputsignal.

Note this 𝑆𝐸𝑇̅̅ ̅̅ ̅ control of the 𝐼𝑁𝑇𝑅̅̅ ̅̅ ̅̅ ̅ F/F remains low for 8 of the external clock periods

(as the internal clocks runat 1/8 of the frequency of the external clock). If the data output is

continuously enabled (𝐶𝑆̅̅̅̅ and 𝑅𝐷̅̅ ̅̅ both heldlow), the 𝐼𝑁𝑇𝑅̅̅ ̅̅ ̅̅ ̅ output will still signal the end of

conversion (by a high-to-low transition), because the 𝑆𝐸𝑇 ̅̅ ̅̅ ̅̅ inputcan control the Q output of

the INTR F/F even though the RESET input is constantly at a M "1M " level in thisoperating

mode. This 𝐼𝑁𝑇𝑅̅̅ ̅̅ ̅̅ ̅ output will therefore stay low for the duration of the 𝑆𝐸𝑇̅̅ ̅̅ ̅ signal, which is 8

periods ofthe external clock frequency (assuming the ADC is not started during this interval).

When operating in the free-running or continuous conversion mode (𝐼𝑁𝑇𝑅̅̅ ̅̅ ̅̅ ̅ pin tied to

𝑊𝑅̅̅ ̅̅ ̅ and 𝐶𝑆̅̅̅̅ wired low), the START F/F is SET by the high-to-low transition of the 𝐼𝑁𝑇𝑅̅̅ ̅̅ ̅̅ ̅

signal. This resets theSHIFT REGISTER which causes the input to the D-type latch, LATCH

1, to go low. As the latch enable input isstill present, the Q output will go high, which then

allows the 𝐼𝑁𝑇𝑅̅̅ ̅̅ ̅̅ ̅ F/F to be RESET. This reduces the width ofthe resulting 𝐼𝑁𝑇𝑅̅̅ ̅̅ ̅̅ ̅ output pulse

to only a few propagation delays (approximately 300 ns).

When data is to be read, the combination of both 𝐶𝑆̅̅̅̅ and 𝑅𝐷̅̅ ̅̅ being low will cause the

𝐼𝑁𝑇𝑅̅̅ ̅̅ ̅̅ ̅ F/F to be reset andthe Tri-state output latches will be enabled to provide the 8-bit digital

outputs.

Functional Block Diagram

ADC0804Pin Configuration :

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 80

Schematic Diagram:

Features:

Interfacing Logic Needed – Access Time 135 ns

Easy Interface to All Microprocessors/Microcontrollers, or Operates as a Stand-Alone Device

Differential Analog Voltage Inputs

Logic Inputs and Outputs Meet Both MOS and TTL Voltage-Level Specifications

Works with 2.5-V (LM336) Voltage Reference On-Chip Clock Generator

0-V to 5-V Analog Input Voltage Range with Single 5-V Supply

No Zero Adjust Required

0.3-Inch Standard Width 20-Pin DIP Package

20-Pin Molded Chip Carrier or Small Outline Package

Operates ratio metrically or with 5 VDC, 2.5 VDC, or Analog Span Adjusted Voltage

Reference

Key Specifications

Resolution: 8 Bits

Total Error: ±1/4 LSB, ±1/2 LSB and ±1 LSB

Conversion Time: 100 μs

Applications:

Operates with Any 8-Bit μP Processors/Microcontroller or as a Stand-Alone Device

 Interface to Temp Sensors, Voltage Sources, and Transducers

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 81

AC Electrical Characteristics

The following specifications apply for VCC=5 VDC and TMIN≤ TA≤TMAX (unless

otherwise specified)

(1) Accuracy is specified at fCLK = 640 kHz. At higher clock frequencies accuracy can degrade. For

lower clock frequencies, the duty cycle limits can be extended so long as the minimum clock high time

interval or minimum clock low time interval is no less than 275 ns.

(2) With an asynchronous start pulse, up to 8 clock periods may be required before the internal clock

phases are proper to start the conversion process.

Algorithm:

1. Start

2.Initiates p1 as the input port

3. clear p3.3 to make cs=0

4. set p3.2 to make rd high

5. clear p3.1 to make wr low

6.set p3.1 high again to do low to high pulse to wr for starting conversion

7.polls until intr=0 using p3.0

8.clear p3.3 and p3.2 to ensures cs=0 and high to low pulse to rd for reading the data from

ADC circuit.

9. moves the digital data to accumulator from p1

10. complements the digital data

11. rotate left 8 times with 1 bit wise in the accumulator content

12. send accumulator content to p0

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 82

13 Give delay

14.Go to step 2

Program :

org 00h

 mov p0,#00h

 mov p1,#11111111b // initiates p1 as the input port

main: clr p3.3 ;makes cs=0

 setb p3.2 ; makes rd high

 clr p3.1 ; makes wr low

 setb p3.1 ; low to high pulse to wr for starting conversion

wait: jb p3.0,wait ; polls until intr=0

 clr p3.3 ; ensures cs=0

 clr p3.2 ; high to low pulse to rd for reading the data from adc

 mov a,p1 ; moves the digital data to accumulator

 cpl a ; complements the digital data (*see the notes)

 rl a

 rl a

 rl a

 rl a

 rl a

 rl a

 rl a

 rl a

 mov p0,a ; outputs the data to p0 for the leds

 call delay

 sjmp main ; jumps back to the main program

delay:

 mov r3,#0ffh

h2: mov r4,#0ffh

h1: djnz r4,h1

 djnz r3,h2

 ret

end

Result:

 Interfacing of 8 bitADC with 8051 has been performed.

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 83

Exercise:

1. ADC 0804 is based on …………… circuitry.

2. What is the conversion time of ADC0804?

3. What is the operating clock frequency of ADC?

Lab Incharge HOD

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 84

16. Interface DAC to 8051

Aim:To generate triangular wave using DAC interface with 8051 micro controller.

Apparatus:Keil IDE, Prog Isp, PC, 8051 micro controller kit, parallel bus, USB powered

89S52 Programmer, DCA1408.

Theory:

Circuit Description:

The MC1408 consists of a reference current amplifier, an R-2R ladder, and 8 high-

speed current switches. For many applications, only a reference resistor and reference voltage

need be added. The switches are non-inverting in operation; therefore, a high state on the input

turns on the specified output current component. The switch uses current steering for high

speed, and a termination amplifier consisting of an active load gain stage with unity gain

feedback. The termination amplifier holds the parasitic capacitance of the ladder at a constant

voltage during switching, and provides a low impedance termination of equal voltage for all

legs of the ladder. The R-2R ladder divides the reference amplifier current into binarily-related

components, which are fed to the remainder current which is equal to the least significant bit.

This current is shunted to ground, and the maximum output current is 255/256 of the reference

amplifier current, or 1.992mA for a 2.0mA reference amplifier current if the NPN current

source pair is perfectly matched.

Block Diagram:

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 85

DAC 1408N Pin Configurations:

Schematic Diagram:

Features:

• Fast settling time — 70ns (typ)

• Relative accuracy ±0.19% (max error)

• Non-inverting digital inputs are TTL and CMOS compatible

• High-speed multiplying rate 4.0mA/µs (input slew)

• Output voltage swing +0.5V to –5.0V

• Standard supply voltages +5.0V and –5.0V to –15V

• Military qualifications pending

Applications:

• Tracking A-to-D converters

• Waveform synthesis

• Sample-and-Hold

• Peak detector

• Programmable gain and attenuation

• Audio digitizing and decoding

• Programmable power supplies

G.N.I.T.S. EEE DEPARTMENT: MPMC LAB

 Class: III B. Tech II Semester Page No: 86

Algorithm

1. Start

2. Store 0 in accumulator immediately.

3. Increment content of accumulator by one

4. Send content of accumulator to P2.

5. Check content of accumulator with FFH if true then go to step 4 else next

step.

6. decrement content of accumulator by one

7. Send content of accumulator to P2.

8. Check content of accumulator with 00H if true then go to step 7 else next

step.

9. Jump to step 2.

Program:

org 00h

mov a, #00h

up: inc a

mov p2,a

cjne a,#0ffh,up

down: dec a

mov p2,a

cjne a,#00h,down

sjmp up

delay:

 mov r3,#0ffh

h2: mov r4,#0ffh

h1: djnz r4,h1

 djnz r3,h2

 ret

 end

Result:

Triangular wave is generated using DAC interface with 8051 micro controller

Exercise:

1. DAC is based on ……………. Circuitry.

2. Define resolution of DAC.

3. Define accuracy of DAC.

Lab Incharge HOD

