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Construction of Digital Control System:



General Digital Controller:



Digital PID Positioning Algorithm: 



Digital PID Incremental Algorithm:



Digital PID Incremental Algorithm with 
Derivative :



Industrial Digital PID Module:



Digital PID Controller using UC &FPGA:

 Digital PID Controller can also be implemented Using Micro-controller and FPGA.



Summary For Single Loop PID Controller:



Reference:
1. “Digital Implementation of PID Controller for Temperature Control “, Prachi Rusia,  
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 Adaptive Control is the control method used by a controller which must 
adapt to a controlled system with parameters which vary or are initially 
uncertain. For example, as an aircraft flies, its mass will slowly decrease as a 
result of fuel consumption.

Classification of Adaptive control Techniques:

1. Direct Method.

Estimate the Controller Parameters.

2. Indirect Method.

Estimate the System Parameters.

3. Hybrid Method.

Adaptive Control : 



WHY ADAPTIVE CONTROL:

1. Systems To be Controlled have parameters Un-certinity.

2. System Dynamics experience unpredictable parameter variation 
as the control operation goes on.

Examples: 

1. Robot Manipulation.

2. Ship Steering.

3. Aircraft Control.



MRAC

 An Adaptive controller is a controller with adjustable parameters 

and a Mechanism of adjusting parameters.



MRAC Is Composed of : 

1. Plant Containing Unknown Parameters.

2. Reference Model.

3. Adjustable parameters containing control Law.

4. Ordinary Feedback Loop.

Adjustable of System parameters in MRAC can be obtained in Two ways

1. Gradient Method.(MIT Rule)

2. Lypnov Stability Theory.



MIT RULE : 

Tracking Error =  e = Y-Ym

Introduce the Cost Function  J:

Where ɵ is a vector of controller 

parameters



DEFINE THE MIT RULE OF 

Is called the Sensitivity Derivative. It indicates how the error is influenced by the adjustable parameters 

Example 1:

Process : 

Model : 

Controller : 

Closed Loop System : 

Ideal Controller parameters for perfect model-Following  : 



DERIVATION OF ADAPTIVE LAW:

Sensitivity derivatives : 



Where
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 Introduction.

 Examples of Modern Control Systems.

 Control System Design.



 System – An interconnection of elements and 
devices for a desired purpose.

 Control System – An interconnection of 
components forming a system configuration 
that will provide a desired response.

 Process – The device, plant, or system under 
control.  The input and output relationship 
represents the cause-and-effect relationship 
of the process.



 Open-Loop Control 
Systems utilize a 
controller or control 
actuator to obtain the 
desired response.

 Closed-Loop Control 
Systems utilizes 
feedback to compare the 
actual output to the 
desired output response.

 Multivariable Control 
System



Examples of Modern Control Systems :

(a) Automobile steering 

control system.

(b) The driver uses the 

difference between the 

actual and the desired 

direction of travel

to generate a controlled 

adjustment of the 

steering wheel.

(c) Typical direction-of-

travel response.
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Different Types of Feedback Control:

On-Off Control

This is the simplest form of control. 

Basic Process Control: 1. Feedback Control.

2. Feed Forward Control.



Proportional Control:

A proportional controller attempts to perform better than the On-off type by applying power in proportion to the difference in

temperature between the measured and the set-point. As the gain is increased the system responds faster to changes in set-

point but becomes progressively underdamped and eventually unstable. The final temperature lies below the set-point for this

system because some difference is required to keep the heater supplying power.

The proportional controller (Kp) reduces the rise time, 

increases the overshoot, and reduces the steady-state 

error.  

MATLAB Example:

Kp=300;

num=[Kp];

den=[1 10 20+Kp];

t=0:0.01:2;

step(num,den,t)
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Proportional,  Derivative Control:
The stability and overshoot problems that arise when a proportional controller is used at high gain can be

mitigated by adding a term proportional to the time-derivative of the error signal. The value of the damping
can be adjusted to achieve a critically damped response.

The derivative controller (Kd) reduces both the

overshoot and the settling time.

MATLAB Example

Kp=300;

Kd=10;

num=[Kd Kp];

den=[1 10+Kd 20+Kp];

t=0:0.01:2;

step(num,den,t)
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Proportional +Integral + Derivative Control:

Although PD control deals neatly with the overshoot and problems associated

with proportional control it does not cure the problem with the steady-state

error. Fortunately it is possible to eliminate this while using relatively low gain

by adding an integral term to the control function which becomes



The Characteristics of P, I, and D 

controllers:
A proportional controller (Kp) will have the effect of reducing the rise time and will reduce, but

never eliminate, the steady-state error.

An integral control (Ki) will have the effect of eliminating the steady-state error, but it may

make the transient response worse.

A derivative control (Kd) will have the effect of increasing the stability of the system, reducing

the overshoot, and improving the transient response.

Proportional Control

By only employing proportional control, a steady state error occurs.

Proportional and Integral Control

The response becomes more oscillatory and needs longer to settle, the error disappears.

Proportional, Integral and Derivative Control

All design specifications can be reached.



Tips for Designing a PID Controller
1. Obtain an open-loop response and determine what needs to be improved 

2. Add a proportional control to improve the rise time 

3. Add a derivative control to improve the overshoot 

4. Add an integral control to eliminate the steady-state error 

5. Adjust each of Kp, Ki, and Kd until you obtain a desired overall response.  

Feed Forward Control:



Advanced Process Control: 





Multi- Variable 

Control:

Internal Model Based 

Control:



Important Data Issues: 



Advantages and Disadvantages:



Summary:
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What is PLC?

 A programmable logic controller (PLC) is a special form of microprocessor-based

controller that uses programmable memory to store instructions and to implement

functions such as logic, sequencing, timing, counting, and arithmetic in order to

control machines and processes.

History of PLC:

 PLC was introduced in late 1960’s.

 First commercial and Successful PLC was designed and developed by MODICON

as a relay Replacer for General Motors.

 Earlier, It was a machine with thousands of Electronic Parts.

 Later, In Late 1970’s The Microprocessor became reality and Greatly Enhanced the

Role of PLC permitting to Evolve simple Relay to Sophisticated system as it is Today.



Major Parts of PLC

Typically a PLC system has the basic functional components of processor unit, memory,

power supply unit, input/output interface section, communications interface, and the

programming device in the basic arrangement.

The processor unit or central processing unit (CPU) is the unit containing the microprocessor.

This unit interprets the input signals and carries out the control actions according to the

program stored in its memory, communicating the decisions as action signals to the outputs.

The power supply unit is needed to convert the mains AC voltage to the low DC voltage

(5V) necessary for the processor and the circuits in the input and output interface modules.



 The programming device is used to enter the required program into the memory of

the processor. The program is developed in the device and then transferred to the

memory unit of the PLC.

 The memory unit is where the program containing the control actions to be exercised

by the microprocessor is stored and where the data is stored from the input for

processing and for the output.

 The input and output sections are where the processor receives information from

external devices and communicates information to external devices.

 The inputs might thus be from switches, sensors such as photoelectric cells,

temperature sensors, flow sensors, or the like.

 The outputs might be to motor starter coils, solenoid valves, or similar things.

 The input/output channels provide isolation and signal conditioning functions so that

sensors and actuators can often be directly connected to them without the need for

other circuitry.

 Electrical isolation from the external world is usually by means of opto-isolators (the

term opto-coupler is also often used). Figure shows the principle of an opto-isolator.



Input And Output Devices: Input Devices
 Mechanical Switches:

 A mechanical switch generates an
on/off signal or signals as a result of
some mechanical input causing the
switch to open or close.

 Push Button:

 A push button is a momentary or non-latching
switch which causes a temporary change in the
state of an electrical circuit only while the
switch is physically actuated.

 An automatic mechanism (i.e. a spring) returns
the switch to its default position immediately
afterwards, restoring the initial circuit condition.

Selector switch:
 A manually operated multi-position switch, which is

usually adjusted by a knob or handle, and may have
detents to hold in a given position. Used for instance, in
devices or instruments with multiple functions, ranges, or
modes of operation. Such a switch is usually rotary also
called selector.



 Contactor:

 A contactor is an electrically controlled
switch used for switching an electrical
power circuit, similar to a relay except
with higher current ratings.

 A contactor is controlled by a circuit
which has a much lower power level than
the switched circuit.

 Illuminated push-button: 

 A push-button or simply button is a simple

switch mechanism for controlling some

aspect of a machine or a process.

 Photoelectric Sensors and Switches: A photoelectric

sensor, or photo eye, is an equipment used to discover the

distance, absence, or presence of an object by using a

light transmitter, often infrared, and a photoelectric

receiver. They are largely used in industrial manufacturing



 Encoders :

 The term encoder is used for a device that
provides a digital output as a result of

angular or linear displacement.

 Temperature Sensors :

 A simple form of temperature sensor that can
be used to provide an on/off signal when a
particular temperature is reached is the
bimetal element.

Position sensor: 

A position sensor is any device that permits position

measurement.

It can either be an absolute position sensor or a relative one

(displacement sensor).

Position sensors can be linear, angular, or multi-axis.

Pressure Sensors :
Pressure sensors can be designed to give
outputs that are proportional to the
difference in pressure between two input
ports.



Output Devices: The output ports of a PLC are relay or opto-isolator with transistor or 

triac, depending on the devices that are to be switched on or off. Generally, the digital signal from an 
output channel of a PLC is used to control an actuator, which in turn controls some process. 

 Relay: A relay is an electrically operated switch.
Many relays use an electromagnet to
mechanically operate a switch, but other
operating principles are also used, such as solid-
state relays.

 Relays are used where it is necessary to control
a circuit by a low-power signal (with complete
electrical isolation between control and
controlled circuits), or where several circuits
must be controlled by one signal.

 Contactor relays :

 Contactor relays are often used in control and
regulating functions. They are used in large
quantities for the indirect control of motors,

valves, clutches and heating equipment.

Directional Control Valve :These

valves are one of the most fundamental
parts in hydraulic machinery as well as
pneumatic machinery. They allow fluid
flow into different paths from one or
more sources.



 Motors: Directional control valve A DC motor has coils of wire mounted in slots on a cylinder

of ferromagnetic material, which is termed the armature. The armature is mounted on
bearings and is free to rotate. It is mounted in the magnetic field produced by permanent
magnets or current passing through coils of wire, which are called the field coils. When a
current passes through the armature coil, forces act on the coil and result in rotation.



Programming Languages of PLC:

 Most common Languages used in 

PLC Programming are

 1. Ladder Logic.

 2. Functional Block Diagrams.

 3. Sequential Function Chart.

 4. Boolean Mnemonics.

Ladder  Diagram of AND & OR Gates



Applications:

PLCs are used in 

1. Robots Manufacturing and control.

2. Car park control

3. Train Control Station System.

4. Food Processing.

5. Materials Handling.

6. Machine Tools.

7. Conveyors System.
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Lead or Phase-Lead Compensator Using Root Locus

A first-order lead compensator can be designed using the root locus. A lead compensator 

in root locus form is given by 

where the magnitude of z is less than the magnitude of p.   A phase-lead compensator 

tends to shift the root locus toward the left half plane. This results in an improvement in 

the system's stability and an increase in the response speed. 

When a lead compensator is added to a system, the value of this intersection will be a 

larger negative number than it was before. The net number of zeros and poles will be the 

same (one zero and one pole are added), but the added pole is a larger negative number 

than the added zero. Thus, the result of a lead compensator is that the asymptotes' 

intersection is moved further into the left half plane, and the entire root locus will be 

shifted to the left. This can increase the region of stability as well as the response speed. 

Gc s( )
s z( )

s p( )



In Matlab a phase lead compensator in root locus form is implemented by using the 

transfer function in the form 
numlead=kc*[1 z];

denlead=[1 p];

and using the conv() function to implement it with the numerator and denominator 

of the plant 
newnum=conv(num,numlead);

newden=conv(den,denlead); 

Lead or Phase-Lead Compensator Using Root Locus



Lead or Phase-Lead Compensator Using Frequency Response

A first-order phase-lead compensator can be designed using the frequency response. A lead 

compensator in frequency response form is given by 

In frequency response design, the phase-lead compensator adds positive phase to the system 

over the frequency range. A bode plot of a phase-lead compensator looks like the following 

Gc s( )
1   s 

 1  s 
p

1


z

1


m z p sin m 

 1

 1



Lead or Phase-Lead Compensator Using Frequency Response

Additional positive phase increases the phase margin and thus increases the stability of 

the system. This type of compensator is designed by determining alfa from the amount of 

phase needed to satisfy the phase margin requirements, and determining tal to place the 

added phase at the new gain-crossover frequency. 

Another effect of the lead compensator can be seen in the magnitude plot. The lead 

compensator increases the gain of the system at high frequencies (the amount of this gain 

is equal to alfa. This can increase the crossover frequency, which will help to decrease the 

rise time and settling time of the system. 



In Matlab, a phase lead compensator in frequency response form is 

implemented by using the transfer function in the form 
numlead=[aT 1];

denlead=[T 1];

and using the conv() function to multiply it by the numerator and 

denominator of the plant 
newnum=conv(num,numlead);

newden=conv(den,denlead); 

Lead or Phase-Lead Compensator Using Frequency Response



Lag or Phase-Lag Compensator Using Root Locus

A first-order lag compensator can be designed using the root locus. A lag compensator in root 

locus form is given by 

where the magnitude of z is greater than the magnitude of p. A phase-lag compensator tends to 

shift the root locus to the right, which is undesirable. For this reason, the pole and zero of a lag 

compensator must be placed close together (usually near the origin) so they do not appreciably 

change the transient response or stability characteristics of the system. 

When a lag compensator is added to a system, the value of this intersection will be a smaller 

negative number than it was before. The net number of zeros and poles will be the same (one 

zero and one pole are added), but the added pole is a smaller negative number than the added 

zero. Thus, the result of a lag compensator is that the asymptotes' intersection is moved closer 

to the right half plane, and the entire root locus will be shifted to the right. 
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It was previously stated that that lag controller should only minimally change the 

transient response because of its negative effect. If the phase-lag compensator is 

not supposed to change the transient response noticeably, what is it good for? The 

answer is that a phase-lag compensator can improve the system's steady-state 

response. It works in the following manner. At high frequencies, the lag controller 

will have unity gain. At low frequencies, the gain will be z0/p0 which is greater 

than 1. This factor z/p will multiply the position, velocity, or acceleration constant 

(Kp, Kv, or Ka), and the steady-state error will thus decrease by the factor z0/p0. 

In Matlab, a phase lead compensator in root locus form is implemented by using 

the transfer function in the form 
numlag=[1 z];

denlag=[1 p];

and using the conv() function to implement it with the numerator and 

denominator of the plant 
newnum=conv(num,numlag);

newden=conv(den,denlag); 

Lag or Phase-Lag Compensator Using Root Locus



Lag or Phase-Lag Compensator using Frequency Response

A first-order phase-lag compensator can be designed using the frequency response. A 

lag compensator in frequency response form is given by 

The phase-lag compensator looks similar to a phase-lead compensator, except that a is 

now less than 1. The main difference is that the lag compensator adds negative phase to 

the system over the specified frequency range, while a lead compensator adds positive 

phase over the specified frequency. A bode plot of a phase-lag compensator looks like 

the following 
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In Matlab, a phase-lag compensator in frequency response form is 

implemented by using the transfer function in the form 
numlead=[a*T 1];

denlead=a*[T 1];

and using the conv() function to implement it with the numerator and 

denominator of the plant 
newnum=conv(num,numlead);

newden=conv(den,denlead);

Lag or Phase-Lag Compensator using Frequency Response



Lead-lag Compensator using either Root Locus or Frequency 

Response

A lead-lag compensator combines the effects of a lead compensator with those of a lag 

compensator. The result is a system with improved transient response, stability and 

steady-state error. To implement a lead-lag compensator, first design the lead 

compensator to achieve the desired transient response and stability, and then add on a lag 

compensator to improve the steady-state response 



Exercise -  Dominant Pole-Zero Approximations and Compensations

The influence of a particular pole (or pair of complex poles) on the response is mainly determined 

by two factors: the real part of the pole and the relat ive magnitude of the residue at the pole.  The 

real part determines the rate at which the transient term due to the pole decays; the larger the real 

part, the faster the decay.  The relative magnitude of the residue determines the percentage of the 

total response due to a particular pole.

Investigate (using Simulink) the impact of a closed-loop negative real pole on the overshoot of a 

system having complex poles.
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Make pr to vary (2, 3, 5) times the real part of the complex pole for different values of  (0.3, 0.5, 

0.7).

Investigate (using Simulink) the impact of a closed-loop negative real zero on the overshoot of a 

system having complex poles.
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Make zr to vary (2, 3, 5) times the real part of the complex pole for different values of  (0.3, 0.5, 0.7). 



Exercise -  Lead and Lag Compensation

Investigate (using Matlab and Simulink) the effect  of lead and lag compensations on the two 

systems indicated below.  Summarize your observations.  Plot the root-locus, bode diagram 

and output for a step input before and after the compensations.  

Remember 

lead compensation: z<p  (place zero below the desired root location or to the left of the first two 

real poles)

lag compensation:   z>p (locate the pole and zero near the origin of the s-plane)

Lead Compensation (use z=1.33, p=20 and K =15).



Lag Compensation (use z=0.09 , and p=0.015, K=1/6 )

Summarize your findings



Problem 10.36

Determine a compensator so that the percent overshoot is less than 20% and Kv 

(velocity constant) is greater  than  8.
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Design - Root Locus – PID Controller

• PID Controller : Compensation with two Zeros with one pole at origin. 
One Zero can be first designed as the derivative compensator then 
other Zero and one pole at the origin can be designed as ideal 
integrator.

2



Design Steps:

• Evaluate Performance of uncompensated system to determine how much improvement in Transient 
Response is required.

• Design PD controller, include Zero location and  loop Gain.

• Simulate the system shows the  requirements have been met.

• Redesign if the simulation shows that requirements have not been met.

• Design PI controller to yield the required steady state Error.

• Determine the Gains K1, K2, and K3.

• Simulate the system shows the requirements have been met.

• Redesign if the simulation shows that requirements have not been met.



Design - Root Locus – PID Controller
Example:
• Design a PID Controller so that the system can operate with a peak time that is two thirds of uncompensated 

system at 20% overshoot with zero Steady State Error.

Sol: Step1: Evaluate Performance of uncompensated system to determine how much improvement in Transient 
Response is required.



Step2 : Design PD Controller, Include Zero Location and Loop Gain.

• Find Compensated Peak Time 

• Find Compensated Dominant Pole :  

• Get PD Location and Angle

• Get PD zero location – Real Axis



• Get Resulting Gain:



• Step-3,4 Validation:

• Step-5: Design PI controller to yield the required steady state Error. Any ideal integral compensator will 
work as long as the zero is placed close to the origin.

• Get Dominant pole location of Damping ratio line, and get the Gain.



Step-6:

• Determine the Gains K1, K2, and K3:
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Introduction : 

An ideal sliding mode exists only when the system state satisfies the dynamic equation that
governs the sliding Mode for all time. This requires an infinite switching in general to ensure the
sliding motion.

The sliding mode approach is recognized as one of the efficient tools to design Robust
controllers for complex high-order Non-liner Dynamic Plant operating under Uncertainty.
Condition.

Sliding Controller Design provides a systematic approach to the problem of maintaining stability
and Consistent performance.



Concept of Sliding Mode Control : 
Advantage of Sliding Mode Controllers is their insensitivity to parameters variations and 
Disturbances once in the Sliding Mode, Their by Eliminating the Necessity of Exact Modelling.



Concept of Sliding Mode Control : 



Concept of Sliding Mode Control

The Continuous part of the Controller is obtained by combining the process model and Sliding Condition.
The Discontinuous part is Non-Linear and Represents the Switching element of the control law.



Concept of Sliding Mode Control
Sliding can be clearly understood by the below figure 



Chattering Main Drawback : 



Chattering Reduction methods : 
Chattering could be Reduced or Suppressed using different Techniques such as :

1. Non-Linear Gains.

2. Dynamic Extension.

3. Higher order Sliding Mode Control.



Merits : 



Demerits : 

Thank You
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 A hot and cold liquid stream combine at the entrance to a pipe, travel its length, and 

spill into a tank

 Control objective is to maintain temperature in the tank by adjusting the flow rate of 

hot liquid entering the pipe 

FC

cold liquid

hot liquid

TC

2. The sensor does not see the result of the control action

    until the hot liquid travels down the pipe, and this 

    dead time makes tight control difficult.  

1. If the measured temperature is below set point,

    the controller calls for more hot liquid.    

Tsetpoint

Fsetpoint

Large Dead Time Impacts Controller Performance

Example of a “distant” temperature control



 If tank temperature is below set point, the hot liquid valve is 

opened and the temperature entering the pipe increases

 The sensor does not detect this, so the valve is opened more 

and more and the pipe fills with ever hotter liquid

 When hot liquid reaches the tank, the temperature rises to set 

point and the controller steadies the hot liquid flow rate 

 But the full pipe continues pouring hot liquid into the tank, 

causing tank temperature to continue to rise

 Because of the delay, the controller will now fill the pipe with 

too-cold liquid resulting in large oscillations in temperature

 Solutions  1) detune the PID controller 

2) switch to MPC (Model Predictive Control)

Large Dead Time Impacts Controller Performance

Example of a “distant” temperature control



Introduction to Process Control Romagnoli & Palazoglu

Delay Compensation

The potential for 

instability 

increases!

For processes with large time delays,

• A disturbance entering the process will not be detected until after some 

time period has passed,

• The control action based on the delayed information will be inadequate, 

and 

• The control action may take some time to make its effect felt by the 

process. 
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Delay Compensation

Bode plots show that  

…when the process dead-

time increases

 the crossover frequency

decreases 

 ..as a consequence, the 

ultimate gain decreases
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Delay Compensation

GCL s( ) =
y(s)

ysp(s)
=

gc

*(s)g(s)e-tDs

1+gc

*(s)g(s)e-tDs

gc

*(s) =
m(s)

e(s)
=

gc (s)

1+gc (s)g(s) 1- e-tDs( )

y(s) = g(s) × 1-e-tDs( ) ×m(s)

Estimated process model:

 closed loop transfer function

for the “servo” problem:

 transfer function 

of the controller mechanism: 

is the best estimate of the 

actual process delay

g(s)

t
D

is the best estimate of the 

rational part of the

process transfer function



 Now we assume a “perfectly estimated” model:

 gc*(s) is simplified to:

Delay Compensation

g(s)= g(s);           tD = tD

gc

*(s) =
m(s)

e(s)
=

gc (s)

1+gc (s)g(s) 1- e-tDs( )

GCL s( ) =
y(s)

ysp (s)
=

gc (s)

1+gc (s)g(s) 1- e-tDs( )
g(s)e-tDs

1+
gc (s)

1+gc(s)g(s) 1- e-tDs( )
g(s)e-tDs

 the closed loop transfer function for the “servo” problem becomes:



 the closed-loop block diagram can be viewed as this:

Delay Compensation

GCL s( ) =
y(s)

ysp (s)
=

gc (s) ×g(s)

1+gc (s) ×g(s)
e-tDs

 after algebraic manipulation, the closed loop transfer function for

the “servo” problem is:

 the closed loop transfer function 

can be viewed as follows:
GCL s( ) =

y(s)

ysp(s)
=

w(s)

ysp (s)
e-tDs

ysp
y

+
-

sDe
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With Delay Compensator we can send current and not

delayed information back to the controller

If the model is exact, Delay Compensator moves the

dead time out of the feedback loop

The loop stability is greatly improved.

Much tighter control can be achieved (e.g., gains can

be increased manifold).

Delay Compensation




 In most control problems

Real Process Model   Modeling error



compensation would not be complete!

 ...especially in the case of transportation delays that could 

change with process conditions.

 For uncertain processes (inexact model), the performance of

the delay compensation can be arbitrarily poor.

Delay Compensation



Example Smith-1

Consider the following process:

OBJECTIVES 

• Design a Delay Compensator

• Compare with a PI controller without Delay Compensator
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PI Controller onlyPI Controller with Delay Compensator

Example Smith-1
Closed loop response to a unit step in set point

15;8.1  Ick  s

5;4  Ick  s

15;8.1  Ick  s



Smith Predictor

alternative block diagram representation

 The ideal process model 

receives u(t) and produces yideal(t), 

a prediction of what y(t) will be one 

dead time into the future

 this yideal(t) is stored for one P

in the dead time model block. At 

the same time, a previously stored 

yprocess(t) is released that is the 

value of yideal(t) stored one P ago 

 yprocess(t) is a prediction of the 

current value of y(t)

ysetpoint PID

Controller–+

-+

u(t) y(t)

Predict y(t) Behavior

As If There Were 

No Dead Time

Add Time Delay

to “Ideal” 

Prediction of y(t)

Actual

Process

yideal(t)

yprocess(t)

yideal(t) – yprocess(t)

Process Model

Dead Time Model

Model Internal to

Controller Architecture

( y(t) – yprocess(t)) +  yideal(t)

+
+



The Smith Predictor

The Smith controller error, e*(t), is thus:

e*(t) = ysetpoint(t)  ( y(t)  yprocess(t) + yideal(t))

If the model exactly describes the process dynamics

y(t)  yprocess (t) = 0 

so for a perfect model, the e*(t) going to the controller is:

e*(t) = ysetpoint (t)  yideal(t)     

If the model is exact, the Smith error is the set point minus a 

prediction of the process variable if there were no dead time

The model will never be exact, but:
the better the model, the greater the benefit

a bad model can make poor performance horrible 

The Smith Predictor is the first and simplest example of 

MPC
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Lyapunov stability of ODEs

• epsilon-delta and beta-function definitions

• Lyapunov’s stability theorem



Xsig ´ set of all piecewise continuous signals x:[0,T) ! Rn, T2(0,1]

Qsig ´ set of all piecewise constant signals q:[0,T)! Q, T2(0,1]

Sequence property ´ p : Qsig £ Xsig ! {false,true}

E.g.,

A pair of signals (q, x) 2 Qsig £ Xsig satisfies p if p(q, x) = true

A hybrid automaton H satisfies p ( write H ² p ) if

p(q, x) = true, for every solution (q, x) of H

“ensemble properties” ´ property of the whole family of solutions

(cannot be checked just by looking at isolated solutions)

e.g., continuity with respect to initial conditions…



equilibrium point ´ xeq 2 Rn for which f(xeq) = 0

thus x(t) = xeq 8 t ¸ 0 is a solution to the ODE

E.g., pendulum equation

q m

l

two equilibrium points:

x1 = 0, x2 = 0 (down)

and x1 = p, x2 = 0 (up)



equilibrium point ´ xeq 2 Rn for which f(xeq) = 0

thus x(t) = xeq 8 t ¸ 0 is a solution to the ODE

Definition (e–d definition):
The equilibrium point xeq 2 Rn is (Lyapunov) stable if

8 e > 0 9 d >0 : ||x(t0) – xeq|| · d ) ||x(t) – xeq|| · e 8 t¸ t0¸ 0

xeq

d

e

x(t)
1. if the solution starts close to xeq

it will remain close to it forever

2. e can be made arbitrarily small 

by choosing d sufficiently small



pend.m

xeq=(0,0)

stable

xeq=(p,0)

unstable

x1 is an angle 

so you must 

“glue” left to 

right extremes 

of this plot



Definition (continuity definition):
The equilibrium point xeq 2 Rn is (Lyapunov) stable if T is continuous at xeq:

8 e > 0 9 d >0 : ||x0 – xeq|| · d ) ||T(x0) – T(xeq)||sig · e

Xsig ´ set of all piecewise continuous signals taking values in Rn

Given a signal x2Xsig, ||x||sig supt¸0 ||x(t)||

ODE can be seen as an operator
T : Rn ! Xsig

that maps x0 2 Rn into the solution that starts at x(0) = x0

signal norm

supt¸0 ||x(t)  – xeq|| · e

xeq

d

e

x(t)

can be extended to 

nonequilibrium solutions



Definition (continuity definition):
A solution x*:[0,T)!Rn is (Lyapunov) stable if T is continuous at x*

0x*(0), i.e.,

8 e > 0 9 d >0 : ||x0 – x*
0|| · d ) ||T(x0) – T(x*

0)||sig · e

Xsig ´ set of all piecewise continuous signals taking values in Rn

Given a signal x2Xsig, ||x||sig supt¸0 ||x(t)||

ODE can be seen as an operator
T : Rn ! Xsig

that maps x0 2 Rn into the solution that starts at x(0) = x0

signal norm

supt¸0 ||x(t)  – x*(t)|| · e
d

e
x(t)

x*(t)

pend.m



equilibrium point ´ xeq 2 Rn for which f(xeq) = 0

class K ´ set of functions a:[0,1)![0,1) that are

1. continuous

2. strictly increasing

3. a(0)=0

Definition (class K function definition):

The equilibrium point xeq 2 Rn is (Lyapunov) stable if 9 a 2 K:

||x(t)  – xeq|| · a(||x(t0) – xeq||) 8 t¸ t0¸ 0, ||x(t0) – xeq||· c

the function a can be constructed 

directly from the d(e) in the e–d

(or continuity) definitions

s

a(s)

xeq

a
(|

|x
(t

0
) 

–
x e

q
||)

||x
(t

0
) 

–
x e

q
||

x(t)

t



Definition:
The equilibrium point xeq 2 Rn is (globally) asymptotically stable if 

it is Lyapunov stable and for every initial state the solution exists on [0,1) and

x(t) ! xeq as t!1.

xeq

a
(|

|x
(t

0
) 

–
x e

q
||)

||x
(t

0
) 

–
x e

q
||

x(t)

s

a(s)
equilibrium point ´ xeq 2 Rn for which f(xeq) = 0

class K ´ set of functions a:[0,1)![0,1) that are

1. continuous

2. strictly increasing

3. a(0)=0

t



Definition (class KL function definition):

The equilibrium point xeq 2 Rn is (globally) asymptotically stable if 9 b2KL:

||x(t) – xeq|| · b(||x(t0) – xeq||,t – t0) 8 t¸ t0¸ 0

xeq

b
(|

|x
(t

0
) 

–
x e

q
||,

0
)

||x
(t

0
) 

–
x e

q
||

x(t)

equilibrium point ´ xeq 2 Rn for which f(xeq) = 0

class KL ´ set of functions b:[0,1)£[0,1)![0,1) s.t.

1. for each fixed t, b(¢,t) 2 K
2. for each fixed s, b(s,¢) is monotone 

decreasing and b(s,t) ! 0 as t!1

s

b(s,t)

(for each fixed t)

t

b(s,t)
(for each fixed s)

b(||x(t0) – xeq||,t)

t

We have exponential stability

when 

b(s,t) = c e –l t s

with c,l > 0

linear in s and negative 

exponential in t



x2

x1

xeq=(0,0)

asymptotically

stable

xeq=(p,0)

unstable
pend.m

k > 0 (with friction) k = 0 (no friction)

xeq=(0,0)

stable but not

asymptotically

xeq=(p,0)

unstable



Definition (class K function definition):

The equilibrium point xeq 2 Rn is (Lyapunov) stable if 9 a 2 K:

||x(t) – xeq|| · a(||x(t0) – xeq||) 8 t¸ t0¸ 0, ||x(t0) – xeq||· c

Suppose we could show that ||x(t)  – xeq|| always decreases along solutions to 

the ODE. Then

||x(t) – xeq|| · ||x(t0) – xeq|| 8 t¸ t0¸ 0

we could pick a(s) = s ) Lyapunov stability

We can draw the same conclusion by using other measures of how far the solution 

is from xeq:

V: Rn ! R positive definite ´ V(x) ¸ 0  8 x 2 Rn with = 0 only for x = 0

V: Rn ! R radially unbounded ´ x! 1 ) V(x)! 1
provides a measure of

how far x is from xeq

(not necessarily a metric–may 

not satisfy triangular inequality)



V: Rn ! R positive definite ´ V(x) ¸ 0  8 x 2 Rn with = 0 only for x = 0

provides a measure of

how far x is from xeq

(not necessarily a metric–may 

not satisfy triangular inequality)

Q: How to check if V(x(t) – xeq) decreases along solutions?

A: V(x(t) – xeq) will decrease if

can be computed without 

actually computing x(t)

(i.e., solving the ODE)

gradient of V



Definition (class K function definition):

The equilibrium point xeq 2 Rn is (Lyapunov) stable if 9 a 2 K:

||x(t) – xeq|| · a(||x(t0) – xeq||) 8 t¸ t0¸ 0, ||x(t0) – xeq||· c

Theorem (Lyapunov):

Suppose there exists a continuously differentiable, positive definite function V: 
Rn ! R such that

Then xeq is a Lyapunov stable equilibrium.

Why?

V non increasing ) V(x(t) – xeq) · V(x(t0) – xeq) 8 t ¸ t0

Thus, by making x(t0) – xeq small we can make V(x(t) – xeq) arbitrarily small 8 t ¸ t0

So, by making x(t0) – xeq small we can make x(t) – xeq arbitrarily small 8 t ¸ t0

(we can actually compute a from V explicitly and take c = +1). 

V(z – xeq)

z

(cup-like

function)

Lyapunov function


